Radar 101 Fundamentals of Radar – Virtual Webinar Live

Start Dates:

Start Date 1: 10/13/2020 8:00 am


Location Course 1: Virtual Webinar Live

Course Length:



$850 per person


This concise one-day course is intended for those with only modest or no radar experience. It provides an overview with understanding of the physics behind radar, tools used in describing radar, the technology of radar at the subsystem level and concludes with a brief survey of recent accomplish-ments in various applications.

What you will learn:

  • What are radar systems, and how their intended applications control their spectrum and architecture
  • What are the key radar parameters and how they’re selected
  • What are the principal radar modes of operation
  • Radar waves propagation in space and the effects thereof of atmospheric refractivity and surface conditions
  • Radar wave scattering from targets and clutter
  • The radar range equation
  • Thermal noise and detection in thermal noise
  • Radar subsystems, including antenna, transmitter, receiver, and digital processors

Course Outline:

  1. Introduction: The general nature of radar: composition, block diagrams, photos, types and functions of radar, typical characteristics.
  2. The Physics of Radar: Electromagnetic waves and their vector representation. The spectrum bands used in radar. Radar waveforms. Scattering. Target and clutter behavior representations. Propagation: refractivity, attenuation, and the effects of the Earth surface.
  3. The Radar Range Equation: development from basic principles. The concepts of peak and average power, signal and noise bandwidth and the matched filter concept, antenna aperture and gain, system noise temperature, and signal detectability
  4. Thermal Noise and Detection in Thermal Noise: Formation of thermal noise in a receiver. System noise temperature (Ts) and noise figure (NF). The role of a low-noise amplifier (LNA). Signal and noise statistics. False alarm probability. Detection thresholds. Detection probability. Coherent and non-coherent multi-pulse integration.
  5. The Sub-Systems of Radar: Transmitter (pulse oscillator vs. MOPA, tube vs. solid state, bottled vs. distributed architecture), antenna (pattern, gain, sidelobes, bandwidth), receiver (homodyne vs. super heterodyne), signal processor (functions, front and back-end), and system controller/tracker. Types, issues, architectures, tradeoff considerations.
  6. Current accomplishments and concluding discussion.


REGISTRATION:  There is no obligation or payment required to enter the Registration for an actively scheduled course.   We understand that you may need approvals but please register as early as possible or contact us so we know of your interest in this course offering.

SCHEDULING:  If this course is not on the current schedule of open enrollment courses and you are interested in attending this or another course as an open enrollment, please contact us at (410)956-8805 or ati@aticourses.com. Please indicate the course name, number of students who wish to participate. and a preferred time frame. ATI typically schedules open enrollment courses with a 3-5 month lead-time.   To express your interest in an open enrollment course not on our current schedule, please email us at ati@aticourses.com.

For on-site pricing, you can use the request an on-site quote form, call us at (410)956-8805, or email us at ati@aticourses.com.


  • Dr. Menachem Levitas has forty four years of experience in science and engineering, thirty six of which have consisted of direct radar and weapon systems analysis, design, and development. Throughout his tenure he has provided technical support for many shipboard and airborne radar programs in many different areas including system concept definition, electronic protection, active arrays, signal and data processing, requirement analyses, and radar phenomenology. He is a recipient of the AEGIS Excellence Award for the development of a novel radar cross-band calibration technique in support of wide-band operations for high range resolution. He has developed innovative techniques in many areas e.g., active array self-calibration and failure-compensation, array multibeam-forming, electronic protection, synthetic wide-band, knowledge-based adaptive processing, waveforms and waveform processing, and high fidelity, real-time, littoral propagation modeling. He has supported many AESA programs including the Air Force’s Ultra Reliable Radar (URR), the Atmospheric Surveillance Technology (AST), the USMC’s Ground/Air Task Oriented Radar (G/ATOR), the 3D Long Range Expeditionary Radar (3DLRR), and others. Prior to his retirement in 2013 he had been the chief scientist of Technology Service Corporation’s Washington Operations.

    Contact this instructor (please mention course name in the subject line)

Request On-Site Quote