Orbital and Launch Mechanics – Fundamentals

Course Length:



$2290 per person


Every maneuver in space is counterintuitive. Fly your rocketship into a 100-mile circular orbit. Put on the brakes and you will speed up! Mash down on the accelerator and you will slow down! Throw a banana peel out the window and 45 minutes later it will come back and slap you in the face! In this comprehensive 4-day short course, Mr. Logsdon uses 400 clever color graphics to clarify these and a dozen other puzzling mysteries associated with spacecraft maneuvers. He also provides you with a few simple one-page derivations using real-world inputs to illustrate the concepts under study.

What you will learn:

  • How do we launch satellites into orbit and maneuver them to new locations?
  • How do today’s designers fashion performance-optimal constellations of satellites swarming the sky?
  • How do planetary swingby maneuvers provide such amazing gains in performance?
  • How can we design the best multi-stage rocket for a particular mission?
  • What are libration point orbits? Were they really discovered in 1772?
  • What are JPL’s superhighways in space? How were they discovered? How are they revolutionizing the exploration of space?

Course Outline:

  1. The Essence of Astrodynamics. Kepler’s amazing laws. Newton’s clever generalizations. Launch azimuths and ground-trace geometry. Orbital perturbations.
  2. Gliding into Orbit. Isaac Newton’s vis viva equation. Gravity wells. The six classical Keplerian orbital elements.
  3. Rocket Propulsion Fundamentals. The rocket equation. Building efficient liquid and solid rockets. Performance-optimal boosters. Multi-stage rocket design.
  4. Russian and American Rockets. Russia’s magnificient Soyuz booster. The deal of a lifetime turned down cold. Optimal ground operations. The amazing benefits of the economies of scale.
  5. Powered Flight Maneuvers. The Hohmann transfer maneuver. Multi-impulse and low-thrust maneuvers. Plane-change maneuvers. The bi-elliptic transfer. On-orbit rendezvous. Performance-optimal flights to geosync.
  6. Orbit Selection Trades. Birdcage constellations. Geostationary satellites and their on-orbit perturbations. ACE-orbit constellations. Libration point orbits. Halo orbits. Interplanetary spacecraft trajectories. Mars-mission opportunities. Deep-space missions.
  7. Optimal Constellation Design. Constellations, large and small. John Walker’s rosette configurations. John Drain’s elliptical orbit constellations. Space eggs simulations.
  8. Zipping Along JPL’s Superhighways in Space. Libration-point orbits. Equipotential surfaces. 3-dimenstional manifolds. Ballistic capture in space. JPL’s Genesis mission. Capturing ancient stardust. Stepping stones to everywhere. Coasting along tomorrow’s unpaved freeways in the sky.


  • Excellent course. Can't imagine anyone with more knowledge.

  • Friendly instructor .. excellent speaker .. extremely knowledgeable.


REGISTRATION:  There is no obligation or payment required to enter the Registration for an actively scheduled course.   We understand that you may need approvals but please register as early as possible or contact us so we know of your interest in this course offering.

SCHEDULING:  If this course is not on the current schedule of open enrollment courses and you are interested in attending this or another course as an open enrollment, please contact us at (410)956-8805 or ati@aticourses.com. Please indicate the course name, number of students who wish to participate. and a preferred time frame. ATI typically schedules open enrollment courses with a 3-5 month lead-time.   To express your interest in an open enrollment course not on our current schedule, please email us at ati@aticourses.com.

For on-site pricing, you can use the request an on-site quote form, call us at (410)956-8805, or email us at ati@aticourses.com.


Request On-Site Quote