Overview of Unmanned Aircraft Systems (UAS) Powerpoint

Powerpoint (ppt) presentation of the history and evolution of the Unmanned Aircraft System (UAS) and Unmanned Aircraft Vehicles (UAV).  Studies various types of vehicles including Raven, Shadow, Predator, and others.
Powerpoint (ppt) presentation of the history and evolution of the Unmanned Aircraft System (UAS) and Unmanned Aircraft Vehicles (UAV).  Studies various types of vehicles including Raven, Shadow, Predator, and others.

Drones begin descent on US agriculture

No one is laughing now. Once considered only a cut above remote-controlled toys, drones have proven their potency in Afghanistan and the Middle East, and manufacturers are eyeing U.S. agriculture as a tremendous market opportunity. Chris Mailey, vice president of the Association for Unmanned Vehicle Systems International (AUVSI), said, “Agriculture is gonna be the big […]
No one is laughing now. Once considered only a cut above remote-controlled toys, drones have proven their potency in Afghanistan and the Middle East, and manufacturers are eyeing U.S. agriculture as a tremendous market opportunity. Chris Mailey, vice president of the Association for Unmanned Vehicle Systems International (AUVSI), said, “Agriculture is gonna be the big market.” Wired reports that Japan used drones, or unmanned aerial vehicles (UAVs), to spray 30 percent of its rice fields in 2010. UAV technology is rapidly evolving and drones are already seeing limited use in the wine industry. The Federal Aviation Administration, after getting swamped with thousands of drone applications from universities (with a heavy agricultural focus), law enforcement and private citizens, has a 2015 “deadline” to open up U.S. skies to civilian drones. The drone makers have sought congressional help to speed their entry into a domestic market that is worth billions. Some put the drone market value at $5.9 billion and growing and is expected to double in the next decade.  Drones can cost millions of dollars for the most sophisticated varieties to as little as $300 for one that can be piloted from an iPhone. Regardless of how good the drone technology is, the  profit potential for agriculture will depend on drone costs. Mailey believes farming and drones will be a fit. What is your opinion? Please comment below. Read more here. Interested in learning more about Unmanned Aircraft Systems, register to attend ATI’s Unmanned Aircraft System Fundamentals courses which will be presented on July 23-25, 2013 in Columbia, MD.
Sign Up For ATI Courses eNewsletter

Last Chance to Sign Up for Course on Unmanned Aircraft Systems (UAS)

Video Clip: Click to Watch ATI Offers Short Technical Course on Unmanned Aircraft Systems (UAS) Worldwide government, commercial and military use of Unmanned Aircraft Systems (UAS) is anticipated to increase significantly in the future. If you need to know more about UAS maybe you should attend the Applied Technology Institute (ATI) Unmanned Aircraft Systems and Applications […]
Video Clip: Click to Watch
ATI Offers Short Technical Course on Unmanned Aircraft Systems (UAS)
Worldwide government, commercial and military use of Unmanned Aircraft Systems (UAS) is anticipated to increase significantly in the future. If you need to know more about UAS maybe you should attend the Applied Technology Institute (ATI) Unmanned Aircraft Systems and Applications course? This one-day course is designed for engineers, aviation experts and project managers who wish to enhance their understanding of UAS. The course provides the “big picture” for those who work outside of the discipline. Each topic addresses real systems (Predator, Shadow, Global Hawk and others) and real-world problems and issues concerning the use and expansion of their applications. Attending training courses can also put you in touch with peers in your industry affording you the opportunity to network. Networking can help you discover new industry trends, as well as new ideas and insights from others. Our short courses are designed for individuals involved in planning, designing, building, launching, and operating space and defense systems. Whether you are a busy engineer, a technical expert or a project manager, you can enhance your understanding of complex systems in a short time. You will become aware of the basic vocabulary essential to interact meaningfully with your colleagues. Course Outline, Samplers and Notes But don’t take our word for it; determine for yourself the value of our UAS course before you sign up. Check out ourUAS Course Slide Samples or see a video clip about the course from the instructor at UAS on YouTube. After attending the course you will receive a full set of detailed notes from the class for future reference, as well as a certificate of completion. Please visit our website for more valuable information. About ATI and the Instructors Our mission here at the Applied Technology Institute (ATI) is to provide expert training and the highest quality professional development in space, communications, defense, sonar, radar, and signal processing. We are not a one-size-fits-all educational facility. Our short classes include both introductory and advanced courses. ATI’s instructors are world-class experts who are the best in the business. They are carefully selected for their ability to clearly explain advanced technology. Mr. Mark N. Lewellen is the vice chair of an Unmanned Aircraft Systems (UAS) group in the United States that is responsible for generating future UAS spectrum requirements. He is also chairman of a global UAS group that may revise the international Radio Regulations. He is an instructor for a course designed for engineers, aviation experts and project managers who wish to enhance their understanding of UAS. He has twenty-five years of experience and has actively participated in over forty international meetings where he successfully advocated technical and regulatory issues. He is co-founder of RMT Spectrum Associates, Inc. Mr. Lewellen teaches GPS Workshops in conjunction with several Universities. He is an active member of Toastmasters International and an excellent speaker who knows how to take command of an audience. Dates, Times and Locations The UAS short course is currently scheduled for: • November 8th, 2011 in Columbia, MD • February 28th, 2012 in Columbia, MD Now is the time to think about bringing an ATI technical short course to your site. If there are eight or more people who are interested in a course, you save money if we bring the course to you. If you have fifteen or more students, you save over fifty percent compared to a public course.


Sign Up For ATI Courses eNewsletter

Unmanned Aircraft Systems (UAS) course now available

Video Clip: Click to Watch Mark Lewellen of RMT Spectrum Associates, named Instructor for Unmanned Aerial Systems (UAS) course The Applied Technology Institute (ATI) is pleased to announce that Mark N. Lewellen of RMT Associates, Inc. has been selected to teach an Unmanned Aircraft Systems (UAS) course. UAS are a dynamically growing area of interest to the […]
Global Hawk Ready for Nighttime Mission
Video Clip: Click to Watch
Mark Lewellen of RMT Spectrum Associates, named Instructor for Unmanned Aerial Systems (UAS) course
The Applied Technology Institute (ATI) is pleased to announce that Mark N. Lewellen of RMT Associates, Inc. has been selected to teach an Unmanned Aircraft Systems (UAS) course. UAS are a dynamically growing area of interest to the military. They range from the small single man launched Raven system to the large armed Predator system. This one-day course is designed for engineers, aviation experts and project managers who wish to enhance their understanding of UAS. The course provides the “big picture” for those who work outside of the discipline. Each topic addresses real systems (Predator, Shadow, Warrior and others) and real-world problems and issues concerning the use and expansion of their applications. What You Will Learn: • Categories of current UAS and their aeronautical capabilities • Major manufactures of UAS • The latest developments and major components of a UAS • The types of sensor data can UAS provide • Regulatory and spectrum issues associated with UAS • National Airspace System including the different classes of airspace • How UAS will gain access to the National Airspace System (NAS) A more complete course description can be found here Course Outline, Samplers, and Notes Our short courses are designed for individuals involved in planning, designing, building, launching, and operating space and defense systems. Determine for yourself the value of this UAS course before you sign up: UAS Class Video Clip #1 UAS Class Video Clip #2 Or, see slide samples from this UAS Short course. After attending the course you will receive a full set of detailed notes from the class for future reference, as well as a certificate of completion. Please visit our website for more valuable information. About ATI and the Instructors Our mission here at ATI is to provide expert training and the highest quality professional development in space, communications, defense, sonar, radar, and signal processing. We are not a one-size-fits-all educational facility. Our short classes include both introductory and advanced courses. ATI’s instructors are world-class experts who are the best in the business. They are carefully selected for their ability to clearly explain advanced technology. Mr. Mark N. Lewellen has over twenty five years of experience with a wide variety of space, satellite and aviation related projects, including the Predator/Shadow/Warrior/Global Hawk UAVs, Orbcomm, Iridium, Sky Station, and aeronautical mobile telemetry systems. More recently he has been working in the exciting field of UAS. He is currently the Vice Chairman of a UAS Sub-group under Working Party 5B which is leading the US preparations to find new radio spectrum for UAS operations for the next World Radiocommunication Conference in 2012 under Agenda Item 1.3. He is also a technical advisor to the US State Department and a member of the National Committee which reviews and comments on all US submissions to international telecommunication groups, including the International Telecommunication Union (ITU). Times, Dates, and Locations ATI’s UAS and Applications short course is currently scheduled for: Nov 8, 2011 Columbia, MD Feb 28, 2012 Columbia, MD

Sign Up For ATI Courses eNewsletter

ADDRESSING UAS INVESTIGATION AND REPORTING

ATI offers Unmanned Aircraft Systems and Applications course that is scheduled to be presented on the dates below. Unmanned Aircraft Systems and Applications Mar 1, 2011 Beltsville, MD Unmanned Aircraft Systems and Applications Jun 7, 2011 Dayton, OH Unmanned Aircraft Systems and Applications Jun 14, 2011 Beltsville, MD This article was published by By Tom Farrier(M03763), […]

ATI offers Unmanned Aircraft Systems and Applications course that is scheduled to be presented on the dates below.

Unmanned Aircraft Systems and Applications Mar 1, 2011 Beltsville, MD
Unmanned Aircraft Systems and Applications Jun 7, 2011 Dayton, OH
Unmanned Aircraft Systems and Applications Jun 14, 2011 Beltsville, MD

This article was published by By Tom Farrier(M03763), Chairman, ISASI Unmanned Aircraft Systems Working Group in the International Society of Air Safety Investigators newsletter the ISASI Forum.

The Unmanned Aircraft System (UAS) regulatory landscape continues to evolve as the NTSB sets reporting criteria and the FAA ponders rulemaking.

The U.S. National Transportation Safety Board (NTSB) recently published a final rule establishing Treporting criteria for Unmanned

Aircraft System (UAS) related accidents.

This article offers an early look at the

course this influential independent safety

board is charting in its quest to promote

safety in the emerging UAS sector.

Although unmanned aircraft systems

(the operational combination of unmanned

aircraft and their ground control compo

nent) receive extensive and regular news

media coverage, operations in shared air-

space are still an immature and evolving

sector of aviation. This isn’t to say that

UAS are unsophisticated. On the con

trary, many high-end unmanned aircraft

are complex and highly capable, and the

vast majority of the UAS across the size

spectrum are extremely well suited to the

missions for which they’re built. However,

they also are of highly variable reliability

from system to system, and the lack of

an onboard pilot makes them uniquely

vulnerable to failures of the electronic

link through which they are controlled. So

for at least the next several years, they’re

unlikely to be operated at will in any air-

space where their lack of an equivalent

to a “see-and-avoid” capability might put

manned aircraft at risk.

Even given the above, the desired end

state for UAS operations often is referred to as “integration”: the expectation that UAS eventually will he capable of operating in a manner indistinguishable from other aircraft and will be allowed to do so on a file-and-fly basis, in all classes of airspace, and at the users’ discretion. Both regulatory and investigative entities in a number of countries are beginning to work toward this outcome. But just as different types of UAS are in different stages of readiness to make such a leap, there are many paths being taken toward it.

Differences between manned and unmanned aircraft

For readers new to UAS issues, it’s important to highlight two of the most critical differences between manned and unmanned aircraft. First, by definition, the pilot of an unmanned aircraft is physically separated from that aircraft. So there has to be an electronic connection between the two.

The “control link,” also referred to as the “uplink” in some systems, is the path through which the UAS pilot directs the unmanned aircraft’s trajectory: Currently, for all but the most sophisticated systems, the control link offers a unique source of single-point failure potential. Even for the high-end systems, safe recovery following loss of control link may require hundreds or even thousands of miles of autonomous flight for a satellite-controlled unmanned aircraft operating beyond line of sight (BLOS) to be in a position to be recaptured through an alternate line-of-sight (LOS) ground control station.

A second electronic link, which may or may not be paired with the control
link, typically is necessary to support all BLOS operations, and often is provided for purely LOS-capable UAS as well. This second link is a downlink from the aircraft to the ground that provides the principal source of the UAS pilots’ awareness of the performance and the state of their unmanned aircraft. There are no standards regarding the information contained in UAS downlinks.

They may include Global Positioning Satellite (GPS) positional data, heading, airspeed and altitude, engine health,
payload temperature, or a host of other parameters deemed necessary to safe operations. This link provides confirmation to the pilot that control commands have been properly executed by the unmanned aircraft. It’s also important to note that, for BLOS operations, air traffic control communications normally are routed through the aircraft, meaning the loss of either the uplink or downlink may result in an aircraft that unexpectedly reverts to autonomous operation while simultaneously severing all or part of the connection between pilot and controller.

The second major difference between manned and unmanned aircraft associated with the pilot’s remote location is the need to provide an alternate means of compliance with the internationally accepted concept of “see and avoid” as a means of maintaining safe separation between aircraft. Annex 2 to the Convention on International Civil Aviation states, in part,“Regardless of the type of flight plan, the pilots are responsible for avoiding collisions when in visual flight conditions, in accordance with the principle of see and avoid. “

This is mirrored in the U.S. Title 14, Code of Federal Regulations, Paragraph91.113 (b): “When weather conditions permit, regardless of whether an opera-tion is conducted under instrument flight rules or visual flight rules, vigilance shall be maintained by each person operating an aircraft so as to see and avoid other aircr°a ft. “

While the link-related issues described above relate to practical challenges arising from UAS operations, conformity with see-and-avoid obligations represents a fundamental regulatory challenge that has yet to be satisfactorily resolved. Many civil aviation authorities have ad-dressed it by restricting UAS operations to segregated airspace of various types to keep unmanned and manned aircraft from operating alongside each other. The U.S. Federal Aviation Administration (FAA) has taken the approach of authorizing most UAS operations on a case-by-case basis, requiring those wishing to fly unmanned aircraft to provide acceptable alternate means of compliance with the see-and-avoid requirement. This typically takes the form of ground-based or aerial observers charged with the duty of clearing the unmanned aircraft’s flight path, providing appropriate direction to the
pilot-in-command as necessary.

A variety of proposed alternatives to see-and-avoid requirements have been offered by eager UAS operators, including using surveillance payloads to look around for traffic, among others. But the only viable long-term hardware solution on the horizon most likely will be some kind of as yet undefined “sense and avoid” (S&A) system capable of detecting, warning of, and maneuvering the unmanned aircraft to avoid all types of conflicting aircraft, including those that do not emit any kind of electronic signal.

At this point, a reality check seems to be in order. A dedicated S&A capability probably will be expensive, from both a monetary and a payload/performance per-spective. This suggests that the smallest of the “small” UAS (a term yet to be consistently defined) is unlikely to incorporate S&A on the basis of the economic penalties it would drive. That, in turn, makes it reasonable to assume that most UAS operators will request relief from existing see-and-avoid regulations (and others applicable to manned aircraft with which they also find it difficult to comply).

What’s more, UAS at the small end of the size and weight spectrum are the most capable of supporting simple, LOS-orient-ed business models affordably. So readers should calibrate their expectations accordingly. In the near-to-mid term, most of the “unmanned aircraft” in the skies are far less likely to look like their supersized, highly capable BLOS military cousins and far more likely to look like model aircraft (perhaps indistinguishably so).

The new NTSB UAS reporting rule

Now let’s look at the new NTSB rule on UAS accident reporting. Actually, describing the recently issued change that way is a little misleading. What the NTSB did was add a new definition for an “unmanned aircraft accident” to the existing defini-

tion of “aircraft accident” as follows: “For purposes of this part [49 CFR 830.2], the definition of ‘aircraft accident’ includes `unmanned aircraft accident, ‘ as defined herein Unmanned aircraft accident means an occurrence associated with the operation of any public or civil unmanned aircraft system that takes place between the time that the system is activated with the purpose of flight and the time that the system is deactivated at the conclusion Of its mission, in which.

(1) Any person. suffers death. or serious injury or

(2) The aircraft has a maximum gross takeoff weight of 300 pounds or greater and sustains substantial damage. “

The most notable aspects of this rule are

• It represents official acknowledgement that unmanned aircraft are in fact “aircraft,” and as such are subject to the same reporting requirements as every other aircraft involved in an accident.

• It puts UAS on a level playing field with all other aircraft regarding operators’ responsibility to the public for safe operation.

• It establishes an official structure for mandatory accident reporting for all U.S. “public-use” operators of UAS, as well as civil UAS (for now a tiny percentage of domestic UAS operations).

• It establishes a “floor” threshold, based on unmanned aircraft weight, for accident reporting.

• It creates “intent for flight” boundaries for reporting purposes that are ideally suited for UAS operations (and don’t need anybody boarding the aircraft to trigger them).

By placing manned and unmanned air craft on an equal footing for Title 49 purposes, it makes it clear that U.S.  military unmanned aircraft involved in any of the types of accidents that result in NTSB jurisdiction will be subject to the same investigative authority as manned aircraft.

Why are these so important? For starters, there’s a healthy chunk of the population, both inside and outside the government, that would like nothing better than to try to treat unmanned aircraft as something less than “real” aircraft, thus not needing to conform to the regulations under which “real” aircraft operate. All kinds of requirements flow from the obligation to follow general flight rules, not to mention pilot and aircraft certification and qualification requirements.

The third bullet above-the establishment of mandatory reporting rules for “public” aircraft-is extremely important in the U.S., where there are a growing number of non-military unmanned aircraft plying the skies every day. The definition of public aircraft is fairly intricate on the printed page but reasonably straightforward in the context of present-day UAS activities. The NTSB’s specific reference to them allows a rather large umbrella to be opened over quite a few current UAS activities and also has the additional virtue of not being tied to the presence of passengers to be applicable to them.

The fourth observation above refers to the new 300-pound minimum established for reportability of unmanned aircraft accidents. This particular line in the sand, when paired with the continued applicability of the “death and serious injury” requirement, is useful for the following reasons:

(a) It ensures that the time and resources of both the Board and UAS operators won’t be wasted on hull loss accidents involving the rapidly proliferating population of small-sized unmanned aircraft.

(b) It positions the Board to keep an eye on the small but growing number of UAS platforms intended to fly for days, weeks, and even months at a time.

(c) It represents tacit acknowledgement that, while velocity is the most important variable in how hard an impact might be, something weighing 300 pounds has the potential to do some pretty impressive damage no matter how fast it’s going.

(d) The weight threshold itself is in the general range of the 150-kilogram benchmark being looked at as a starting point for UAS regulation and reportability in other countries.

The fifth bullet above refers to a regulatory gap that was plugged quite elegantly by the new language. On April 25, 2006, an RQ-1B Predator operated by the U.S. Customs and Border Protection’s Office of Air and Marine crashed near Nogales, Ariz. Although the aircraft was destroyed, there was no collateral damage or injury suffered on the ground. The NTSB dispatched a team to the site and took charge of the investigation; however, it was later pointed out that, since no one had boarded the aircraft prior to the crash, their legal basis for doing so was a bit of a stretch. Actually, this turned out to be an ideal scenario for issues like that to be surfaced; no one was hurt, there was no collateral damage, and the NTSB had an opportunity to start digging into the kinds of UAS-specific issues that are likely to appear in future unmanned aircraft accident sequences.

Finally, it’s important to have jurisdictional issues decided well in advance of a major accident, when emotions run high and there may be a desire to drive an investigation in one direction or another based on politics rather than settled policy. The United States Code sets very specific criteria for when a military accident becomes subject to civil investigation:  “The National Transportation Safety Board shall investigate

(A) each accident involving civil aircraft; and (B) with the participation of appropriate military authorities, each accident involving both, military and civil aircraft (419 U.S.C. 1132). “ With a definition on the books explicitly designating unmanned aircraft as “aircraft,” this authority will be much more straightforward to apply (should the unfortunate need to do so arises).

Implications of the rule

So, what are the likely real-world changes in investigations that we’ll see based on the new rule?

1. The reporting threshold should result in newcomers to aviation manufacturing being less frequently brought into the formal investigative process than established members of the aerospace industry are. That should translate into smoother, less adversarial investigations; more often than not, the parties will understand their role and obligations.

2. The reporting threshold will tend to drive investigative resources toward accidents involving higher-value unmanned aircraft. Higher fiscal consequences naturally drive investigators and participants alike toward cooperation in determining causes and corrective actions.

3. For the near term, it’s likely that only a handful of non-military public-use UAS accidents will meet the new reportability and investigation requirements, perhaps involving assets of the Department of Homeland Security, the National Aeronautics and Space Administration, or one or two other agencies. That should result in a measured, deliberate expansion of
investigator understanding of the similarities and differences between manned and unmanned aircraft accidents, and should help the NTSB identify new skill sets and capabilities it will need to develop ahead of the inevitable wider deployment of civil UAS platforms.

For the most part, the NTSB steers clear of “incident” reporting and investigation, except where it sees a compelling need to gather data about certain types of events. So, for now at least, the NTSB most likely will concentrate on growling its ability to effectively investigate UAS-related accidents.

However; at some point, it is equally likely that it will start identifying specific issues showing up in UAS accidents that will bear closer scrutiny, in a manner similar to the current information-gathering effort on Traffic Collision Alerting System (TCAS) incidents. It’s also important to realize that, should a collision between a manned aircraft and a UAS smaller
than the 300-pound threshold occur, the same fundamental issues will need to be explored (see sidebar).

Challenges

Now that the NTSB has taken the first steps on the road toward normalizing the investigation of UAS accidents, what needs to happen next? The following issues come immediately to mind.

First and foremost, the NTSB (and for that matter, other national investigative authorities as well) should aggressively develop the same kind of relationships with the UAS operations and manufacturing communities that they have fostered over time with manned aircraft operators and prime and major component contractors.

In this, they may have a less-than-straightforward path to follow, since the most prominent trade association for the UAS sector; the Association of Unmanned Vehicle Systems International, is principally oriented toward marketing. Industry associations such as the Aerospace Industries Association or the General Aviation Manufacturers Association, however, count among their many roles facilitation of interactions between the regulators and the regulated.

Second, now that UAS accident reporting criteria are formally a matter of federal regulation, it will be important to ensure that there is broad understanding as to when a reportable accident has occurred, and to whom the report must be submitted. This ties in with a parallel need, which both the NTSB and the FAA will need to proactively pursue to nurture and enforce a reporting culture among UAS operators that (hopefully) will come to rise above the traditional civil/military stovepipes.

Finally, there may be certain challenges associated with locating the operator, pilot, and manufacturer of a given unmanned aircraft involved in a reportable accident.

For instance, it’s not implausible to envision a scenario involving a disabling collision between a manned aircraft and a smaller unmanned aircraft (on either side
of the 300-pound threshold) in which the
involvement of the latter is not recognized until an on-scene investigation is well under way.

As a practical matter, a fair amount of forensic work may be necessary just to establish the type of powerplant in use by the unmanned aircraft-probably the most likely component to survive significant impact forces-and then use that to try to track down the manufacturer and, eventually, the operator and pilot. In fairness to operators, depending on the nature of both the operation and the accident, they may know they’ve lost an aircraft, but it may not be immediately obvious that a lost link during BLOS lfight resulted in an accident many miles
from the point where contact was lost with the unmanned aircraft.


UAS Accident Investigation Considerations (2011 Edition)

For the foreseeable future, there are likely to be only a handful of NTSB investigators-in-charge with actual experience conducting a UAS accident investigation, and even fewer with
expertise specific to technical aspects of unmanned aircraft operational and materiel failures. So the following is offered to support conversations between investigators and UAS pilots and manufacturers toward the goal of increasing our collective body of knowledge on UAS issues and hazards.

The NTSB parses investigation working groups and specialties into eight categories

Operations

Structures

Power plants

Systems

Air traffic control

Weather

Human performance

Survival factors

Every one of the above may be germane to any accident investigation in which an unmanned aircraft system is either the focus of the investigation or suspected of involvement in the accident sequence. However, the knowledge and skill sets necessary to properly evaluate many aspects of UAS accidents against this investigative model need to be nurtured. Also, some “expanding-the-box” (as opposed to “out-of-the-box”) thinking should be applied in doing so.

For instance, consider the “survival factors” portion of a UAS-involved accident investigation. (Assume the microchip didn’t make it through the crash, shed a tear, and move on.) At first glance, a single-ship unmanned aircraft accident most likely wouldn’t occasion much of a require ment for survival factors investigation. However, using exotic fuels and materials, unique propulsion and electrical generation systems, and other innovative technologies has definite implications when it comes to both community emergency planning and on-scene first responder protection. Further, in the case of every midair collision between a manned and an unmanned aircraft, it will be important to assess the extent to which the unmanned aircraft was able to disrupt the survivable volume of the occupied aircraft, whether through the windscreen or the fuselage.

In every UAS-involved investigation, it is easy to envision the need for a few new tasks for some of the established working groups.

1. Operations: Establish the authority under which the unmanned aircraft system is being operated (Part 91, certificate of waiver or authorization, special airworthiness certificate in the experimental category, etc.).

2. Operations/Air Traffic/Human Performance Groups: Determine the interactions taking place at the time of the accident. Was the pilot (and observer, if required) able to perceive relevant system state information (aircraft state, ATC direction, other aircraft potentially affected)?

3. Systems: Study the system logic; consider how primary versus consequent failures might present themselves during the accident sequence (e.g., was lost link a root cause of the accident or was link lost because of other failures?).

Beyond needing to simply apply new thinking to the existing investigative disciplines listed above, serious new knowledge will need to be built in the realm of UAS-unique systems. UAS avionics are designed to meet specificneeds, but for now at least there aren’t any applicable technical specification orders (TSO) out there to help guide their development. That means there are a host of as yet unexplored questions regarding the stability of data streams between pilot and aircraft, their vulnerability to accidental (or intentional) disruption, and even the extent to which multiple unmanned aircraft can be safely operated in close proximity to each other without encountering unexpected problems.

One final point-Assessment of the radio frequency spectrum for its possible involvement in an accident sequence has rarely been required in the early days of fly-by-wire aircraft. However, putting UAS into the aviationenvironment may renew the need to do so on a regular basis and might require a new or expanded relationship between NTSB investigators and Federal Communications Commission engineers as well. The bottom line is that when it comes to UAS,to quote a time-honored aphorism, “We don’t know what we don’t know”

Summing up

With its first steps into the burgeoning ifeld of unmanned aircraft systems, the NTSB has made a commendable and necessary contribution toward normalizing some previously unresolved issues regarding how UAS accidents in the U.S. National Airspace System are to be addressed. The regulatory landscape continues to evolve, and it is welcome indeed
to see the NTSB ensuring it is actively engaged in shaping it.


Why Not a Short Technical Course for Your New Years Resolution?

ATI Short Courses Rock! Video Clip: Click to Watch Why Not Make Yourself a New Year’s Resolution which is Easy to Keep? Making New Year’s resolutions is easy. Keeping New Year’s resolutions is hard. It doesn’t have to be hard. While we can’t help you take those holiday pounds off, or reduce your holi-“daze” bills, we […]
ATI Short Courses Rock!
ATI Short Courses Rock!
Video Clip: Click to Watch
Why Not Make Yourself a New Year’s Resolution which is Easy to Keep?
Making New Year’s resolutions is easy. Keeping New Year’s resolutions is hard. It doesn’t have to be hard. While we can’t help you take those holiday pounds off, or reduce your holi-“daze” bills, we can help improve your career by keeping your professional knowledge up-to-date. Our short courses provide a clear understanding of fundamental principles and give you a better working knowledge of current technology and applications. Since 1984, Applied Technology Institute (ATI) has provided leading-edge public courses and onsite technical training to DoD and NASA personnel, as well as contractors. ATI is the leading technical training organization specializing in short courses in space, communications, defense, sonar, radar, and signal processing. Any ATI course can be customized and presented On Site at your location. To make it easy to keep this New Year’s resolution, you can contact ATI in any one of five easy ways: • Call toll free at 1-888-501-2100 • Visit us on the web at aticourses.com • Send an email to ati@ATIcourses.com • See the exclusive ATI channel on YouTube at ATI on YouTube • Fax us your completed registration at 410-956-5785 ATI short courses are designed to help you keep your professional knowledge up-to-date. Our courses provide a practical overview of space and defense technologies which provide a strong foundation for understanding the issues that must be confronted in the use, regulation and development such complex systems. Our short courses are designed for individuals involved in planning, designing, building, launching, and operating space and defense systems. Whether you are a busy engineer, a technical expert or a project manager, you can enhance your understanding of complex systems in a short time. You will become aware of the basic vocabulary essential to interact meaningfully with your colleagues. Course Outline, Samplers, and Notes Determine for yourself the value of our courses before you sign up. See our samples (See Slide Samples) on some of our courses. Or check out the new ATI channel on YouTube. After attending the course you will receive a full set of detailed notes from the class for future reference, as well as a certificate of completion. Please visit our website for more valuable information. About ATI and Our Instructors Our mission here at the ATI is to provide expert training and the highest quality professional development in space, communications, defense, sonar, radar, and signal processing. We are not a one-size-fits-all educational facility. Our short classes include both introductory and advanced courses. ATI’s instructors are world-class experts who are the best in the business. They are carefully selected for their ability to clearly explain advanced technology. Times, Dates and Locations For the times, dates and locations of all of our technical short courses, please access the links below. Sincerely, The ATI Courses Team P.S Call today for registration at 410-956-8805 or 888-501-2100 or access our website at www.ATIcourses.com. For general questions please email us at ATI@ATIcourses.com.
Mark N. Lewellen
Consultant/Instructor
Washington, DC
240-882-1234

Don’t be a S.H.E.E.P in 2011

Are you part of the herd? Video Clip: Click to Watch ATI short technical courses provide concise, practical answers to put you ahead of the pack Do you want your profession to stagnate next year? Or would a short technical course advance your career? Instead of doing the same thing, why not try something new? Technical […]
Are you part of the herd?
Are you part of the herd?
Video Clip: Click to Watch
ATI short technical courses provide concise, practical answers to put you ahead of the pack
Do you want your profession to stagnate next year? Or would a short technical course advance your career? Instead of doing the same thing, why not try something new? Technical training: Could it be just the thing for you? Since 1984, from the Applied Technology Institute (ATI) has provided leading-edge public courses and onsite technical training to DoD and NASA personnel, as well as contractors. ATI short courses are designed to help you keep your professional knowledge up-to-date. Our courses provide a practical overview of space and defense technologies which provide a strong foundation for understanding the issues that must be confronted in the use, regulation and development such complex systems. Whether you are a busy engineer, a technical expert or a project manager, you can enhance your understanding of complex systems in a short time. You will become aware of the basic vocabulary essential to interact meaningfully with your colleagues. Course Outline, Samplers, and Notes Determine for yourself the value of our courses before you sign up. Check out the new ATI channel on YouTube. Or see our samples (See Slide Samples) on some of our courses. After attending the course you will receive a full set of detailed notes from the class for future reference, as well as a certificate of completion. Please visit our website for more valuable information. About ATI and the Instructors Our mission here at ATI is to provide expert training and the highest quality professional development in space, communications, defense, sonar, radar, and signal processing. We are not a one-size-fits-all educational facility. Our short classes include both introductory and advanced courses. ATI’s instructors are world-class experts who are the best in the business. They are carefully selected for their ability to clearly explain advanced technology. Dates, Times and Locations For the dates and locations of all of our short courses, please access the links below. Sincerely, The ATI Courses Team P.S. Call today for registration at 410-956-8805 or 888-501-2100 or access our website at www.ATIcourses.com. For general questions please email us at ATI@ATIcourses.com.
Mark N. Lewellen
Consultant/Instructor
Washington, DC
240-882-1234

Can You Pass the Certified Systems Engineers Professional (CSEP) Exam?

Will YOU be part of the supply? Video Clip: Click to Watch Certified Systems Engineers Are In Demand Just as you would not attempt a state bar exam without studying, you should not attempt the CSEP (Certified Systems Engineer Professional) exam without preparation. By taking a preparatory course, you can yield great benefits in performance, stress […]
Will YOU be part of the supply?
Will YOU be part of the supply?
Video Clip: Click to Watch
Certified Systems Engineers Are In Demand
Just as you would not attempt a state bar exam without studying, you should not attempt the CSEP (Certified Systems Engineer Professional) exam without preparation. By taking a preparatory course, you can yield great benefits in performance, stress reduction and overall, greatly improve your chances of passing the exam. While the economy is down, the demand for systems engineers is still growing — but supply is low. To assist you in your career, the Applied Technology Institute (ATI) has added a CSEP preparation course to its curriculum. Systems engineering is a profession, practice and way of doing business that concentrates on the design and application of the whole system to produce a successful product or system. The International Council on Systems Engineering (INCOSE) has established a Professional Certification Program to provide a formal method for recognizing the knowledge and experience of systems engineers. The INCOSE CSEP rating is a coveted milestone in the career of a systems engineer, demonstrating knowledge, education and experience and is of high value to systems organizations. Course Outline, Samplers, and Notes Determine for yourself the value of our course before you sign up. For example click here to see our CSEP slide samples or click here to see ATI CSEP on YouTube. After attending the course you will receive a full set of detailed notes from the class for future reference, as well as a certificate of completion. Please visit our website for more valuable information. About ATI and the Instructors The instructor for this class is Eric Honour, an international consultant and lecturer, who has nearly forty year career of complex systems development & operation. He was Founder and former President of INCOSE. He has led the development of eighteen major systems, including the Air Combat Maneuvering Instrumentation systems and the Battle Group Passive Horizon Extension System. Dates, Times and Locations The dates and locations for our CSEP courses in 2011 are listed here: February 11-12, 2011, Orlando, FL March 30-31, 2011, Minneapolis, MN September 16, 2011, Chantilly, VA For a complete ATI course list, please access the links below. Sincerely, The ATI Courses Team P.S. Call today for registration at 410-956-8805 or 888-501-2100 or access our website at www.ATIcourses.com. For general questions please email us at ATI@ATIcourses.com.
Mark N. Lewellen
Consultant/Instructor
Washington, DC
240-882-1234