AMERICA’S INFRARED SPITZER TELESCOPE by Tom Logsdon

Tom Logsdon teaches a number of courses for Applied Technology Institute including: Orbital & Launch Mechanics – Fundamentals GPS Technology Strapdown and Integrated Navigation Systems Breakthrough Thinking: Creative Solutions for Professional Success The article below was written by him could be of interest to our readers. AMERICA’S INFRARED SPITZER TELESCOPE “As in the soft and […]
ASA’s Spitzer Space Telescope, which launched Aug. 25, 2003, will begin the “Beyond” phase of its mission on Oct. 1, 2016. Spitzer has been operating beyond the limits that were set for it at the beginning of its mission, and making discoveries in unexpected areas of science, such as exoplanets.
NASA’s Spitzer Space Telescope, which launched Aug. 25, 2003, will begin the “Beyond” phase of its mission on Oct. 1, 2016. Spitzer has been operating beyond the limits that were set for it at the beginning of its mission, and making discoveries in unexpected areas of science, such as exoplanets.
Tom Logsdon teaches a number of courses for Applied Technology Institute including:
  1. Orbital & Launch Mechanics – Fundamentals
  2. GPS Technology
  3. Strapdown and Integrated Navigation Systems
  4. Breakthrough Thinking: Creative Solutions for Professional Success
The article below was written by him could be of interest to our readers. AMERICA’S INFRARED SPITZER TELESCOPE “As in the soft and sweet eclipse, when soul meets soul on lover’s lips.”  

British Lyric Poet

                                                                                                Percy Shelly

                                                                                                     Prometheus Unbound, 1820

America’s famous inventor, Thomas Edison, The Wizard of Menlo Park, had long admired the somber, romantic words penned by England’s master poet Percy Shelly.  And, like Shelly, he, too, was enchanted with the sensual experiences conjured up by the periodic eclipses that blotted out the sun and the moon. In 1878 Edison clambered aboard the newly constructed transcontinental railroad headed from New Jersey to Wyoming where he hoped to utilize his newly constructed infrared sensor to study the total solar eclipse he knew would soon sweep across America’s western landscape.  When he arrived in Wyoming, the only building he could rent was an old chicken coop at the edge of the prairie.  And, as soon as the moon slipped in front of the sun causing the sky to darken, the chickens decided to come to roost. Soon The Wizard of Menlo Park was so busy trying to quiet his squawking companions, he caught only a fleeting glimpse of the rare and colorful spectacle lighting up the darkened daytime sky.  His infrared sensor, unfortunately, remained untested that day. Even if those agitated Wyoming chickens had behaved themselves with proper decorum during that unusual event, Thomas Edison’s sensor would have been entirely ineffective because most of the infrared frequencies emanating from the sun and the stars are absorbed by the atmosphere surrounding the earth.  However, sensors of similar design can, and do, handle important astronomical tasks when they are installed in cryogenically cooled telescopes launched into space by powerful and well-designed rockets. The infrared rays streaming down to earth from distant stars and galaxies lie just beyond the bright red colors at the edge of in the electromagnetic spectrum our eyes can see.  As such, they penetrate the clouds of dust found, in such abundance, in interstellar space.  The dust that has accumulated under your bed is not particularly valuable or interesting.  But the dust found in outer space is far more beneficial – and exciting, too! The Spitzer Space Telescope – a giant thermos bottle in space – now following along behind planet earth as it circles the sun, was an effective infrared telescope until it used up its entire supply of liquid helium coolant.  In the meantime, it has become a “warm” space-age telescope seeking out previously undiscovered exoplanets orbiting around suns trillions of miles away.  This is accomplished by observing their shadows periodically dimming the star’s visible light as the various planets coast in between the Spitzer and the celestial body being observed.

See all the ATI open-enrollment course schedule

https://aticourses.com/schedule.html

See all the ATI courses on 1 page. What courses would you like to see scheduled as an open-enrollment or on-site course near your facility? ATI is planning its schedule of technical training courses and would like your recommendations of courses that will help your project and/or company. These courses can also be held on-site at your facility.

https://aticourses.com/catalog_of_all_ATI_courses.htm