top header
top gradation HOME top vertical line top vertical line top vertical line top vertical line top vertical line top vertical line top vertical line menu gray
black line 2
menu gray tab More About ATI
menu blue ATI — Who We Are
white line
menu blue Contact ATI Courses
white line
menu blue List Of ATI Courses
white line
menu blue Attendees Testimonials
white line
menu blue The ATI FAQ Sheet
white line
menu blue Suggestions/Wait List
white line
menu blue New Courses
white line
menu blue Become an ATI Instructor
menu gray tab site resources
menu blue Acoustics & Sonar
white line
menu blue Rockets & Space
white line
menu blue GPS Technology
white line
menu blue ATI Blog
white line
menu blue ATI Space News
white line
menu blue ATI Site Map
white line
menu blue ATI Staff Tutorials
white line
menu blue ATI Sampler Page
white line
menu gray tab bar
menu gray tab courses
white line
menu blue Current Schedule
white line
menu blue Onsite Courses
white line
menu blue Register Online
white line
menu blue Request Brochure
white line
menu blue Free On-Site Price Quote
white line
menu blue Download Catalog
white line
menu blue Distance Learning
black line  

ATI's Tactical and Strategic Missile Guidance course

Share |


    Technical Training Short On Site Course Quote

      This two-day course will help you understand and appreciate the unique challenges of both tactical and strategic missile guidance. So everyone can clearly understand the principles of missile guidance, concepts are derived mathematically, explained from a heuristic perspective, and illustrated with numerical examples and computer animations. Course mathematics and examples are non-intimidating. Computer source code is included so interested participants and duplicate the examples presented and explore issues beyond the scope of the course. The instructor's textbook, Tactical and Strategic Missile Guidance, Fifth Edition, is included as well as a comprehensive set of course notes



      Paul Zarchan has more than 40 years of experience designing, analyzing, and evaluating missile guidance systems. He has worked as Principal Engineer for Raytheon Missile Systems Division, has served as Senior Research Engineer with the Israel Ministry of Defense and was a Principal Member of the Technical Staff for C.S. Draper Laboratory. Mr. Zarchan is currently a Member of the Technical Staff at MIT Lincoln Laboratory and is working on problems related to missile defense. He is the author of Tactical and Strategic Missile Guidance, Fifth Edition and the co-author of Fundamentals of Kalman Filtering: A Practical Approach, Second Edition.

      Contact this instructor (please mention course name in the subject line)

    Key Topics:

    • Interceptor guidance system technology.
    • How subsystems influence total system performance.
    • Useful design relationships for rapid guidance system sizing.
    • Using adjoints to analyze missile guidance systems.

    Who Should Attend:

      This course will benefit managers, engineers, and programmers at all levels who work with or need to learn about interceptor guidance system technology. The heuristic arguments and numerous examples will give managers an appreciation for guidance so that they can interact effectively with specialists. Engineers and programmers will find the detailed course material and many source code listings (in FORTRAN, MATLAB, TrueBASIC and C) invaluable for both learning and reference. Attendees will receive a complete set of course notes as well as the textbook, Tactical and Strategic Missile Guidance, Fifth Edition.

    Course Outline:

    1. Numerical Techniques. Review of all numerical techniques used in the course so that all material will be easy to understand. Simulation examples, with source code.

    2. Fundamentals of Tactical Missile Guidance. How proportional navigation works and why it is an effective guidance law. Illustration of important closed-form solutions and their utility. Development of simplified engagement simulation and computer animation illustrating effectiveness of proportional navigation.

    3. Method of Adjoints and the Homing Loop. Show how to construct an adjoint and how method of adjoints are used to analyze missile guidance systems and develop system error budgets

    4. Noise Analysis. Illustrating computerized numerical techniques for simulating noise. Using the Monte Carlo technique for getting statistical performance projections by making many computer runs. How to use stochastic adjoints to get statistical performance projections in one computer run

    5. Proportional Navigation and Miss Distance. Developing useful design relationships for rapid guidance system sizing. Showing how system dynamics, acceleration saturation and radome effects limit system performance.

    6. Digital Noise Filters in the Homing Loop. Properties of simple digital noise filters (i.e., alpha-beta and alpha-beta gamma filters) and how they can work in a missile guidance system. How target maneuver can be estimated with range and line-of-sight information.

    7. Advanced Guidance Laws. Deriving optimal guidance laws without optimal control theory. How missile acceleration requirements can be relaxed with augmented proportional navigation. How to compensate for system dynamics with optimal guidance.

    8. Kalman Filters and the Homing Loop. Introducing the Kalman filter and showing how it is related to alpha-beta and alpha-beta gamma filters. Combining Kalman filters with optimal guidance. Showing how radome effects and time to go errors limit system performance.

    9. Endoatmospheric Ballistic Targets. The importance of speed, re-entry angle, and ballistic coefficient in determining the deceleration of a ballistic target. Why decelerating targets are difficult to hit and guidance laws for dealing with them.

    10. Extended Kalman Filtering. Performance comparisons of linear, linearized, and extended Kalman filters for estimating the ballistic coefficient of a decelerating ballistic target.

    11. Tactical Zones. Introduction to the rocket equation and how drag limits system performance.

    12. Strategic Considerations. Why the flat earth, constant gravity approximation is not appropriate for long range missiles. How Newtonís law of universal gravitation can be used and itís impact on performance. Useful closed-form solutions for the required velocity and time of flight for strategic missiles.

    13. Boosters. Using the rocket equation for booster sizing and an introduction to gravity turn steering for boosters

    14. Lambert Guidance. Why the solution to Lambertís problem is fundamental to steering a booster so that it will arrive at a desired location at a certain time. How to guide liquid fueled boosters with Lambert guidance and solid fueled boosters with GEM guidance.

    15. Theater Missile Defense. Why ballistic targets are challenging- even if they donít maneuver. How guidance laws can be developed to shape the trajectory and influence the impact angle.


    This course is not on the current schedule of open enrollment courses. If you are interested in attending this or another course as open enrollment, please contact us at (410) 956-8805 or at and indicate the course name and number of students who wish to participate. ATI typically schedules open enrollment courses with a lead time of 3-5 months. Group courses can be presented at your facility at any time. For on-site pricing, request an on-site quote. You may also call us at (410) 956-8805 or email us at