Professional Development Short Course On:

Self-Organizing Wireless Networks

Instructor:

Timothy D. Cole

ATI Course Schedule: http://www.ATIcourses.com/schedule.htm

Applied Technology Institute (ATIcourses.com)
Stay Current In Your Field • Broaden Your Knowledge • Increase Productivity
349 Berkshire Drive • Riva, Maryland 21140
888-501-2100 • 410-956-8805
Website: www.ATIcourses.com • Email: ATI@ATIcourses.com
Boost Your Skills with On-Site Courses Tailored to Your Needs

The Applied Technology Institute specializes in training programs for technical professionals. Our courses keep you current in the state-of-the-art technology that is essential to keep your company on the cutting edge in today’s highly competitive marketplace. Since 1984, ATI has earned the trust of training departments nationwide, and has presented on-site training at the major Navy, Air Force and NASA centers, and for a large number of contractors. Our training increases effectiveness and productivity. Learn from the proven best.

For a Free On-Site Quote Visit Us At: http://www.ATIcourses.com/free_onsite_quote.asp

For Our Current Public Course Schedule Go To: http://www.ATIcourses.com/schedule.htm
INTRODUCTION: Objectives/goals

• The course introduces technologies that spawned mote-sized wireless sensors
 ◆ Sensor modalities stemming from MEMs and/or miniaturization
 ◆ Radio stack (chip) development
 ◆ Distributed processing (middleware) functionality & implementation

• Efforts in self-organizing wireless networks and are discussed including that associated with the DARPA/NEST program:

• Background information that describes ad hoc networking,
 ◆ Mote core designs, mote-based sensor design rules
 ◆ Issues associated with data exfiltration and deployment
 ◆ Provides insights concerning mote-field C² interfaces
 ◆ Data associated with mote arrays resulting from testing
 ◆ Trade-off criteria and evaluation procedures
 ◆ Hands-on experiences and issues that are being worked…
INTRODUCTION: Objectives/goals

- **Course does not:**
 - Teach how to code using C (NesC) nor wield TinyOS, TinydB, Deluge, Serial Forwarder, C2PC…
 - Indicate to layout & design a mote core
 - Demonstrate programming issues due to concurrent real-time programming
 - Hint: get a RTOS! Hint hint: get a debugger
 - Indicate how to specifically setup simulations (TOSSIM)

- **Prerequisites, assume familiarity with:**
 - Computer languages and OS environments
 - Principles behind RF communication theory and implementation
 - Protocol in MAC, routing, and capacity of multi-hop wireless network

- **Good news:**
 - TinyOS = open source, a LOT of help exists online (join TinyOS help)
 - https://www.millennium.berkeley.edu/mailman/listinfo/tinyos-help
 - Same for TOSSIM, tutorial: http://www.tinyos.net/tinyos-1.x/doc/tutorial/lesson5.html
 - If C programmer, not too difficult to make transition to NesC
 - TinyOS et al, takes some spin up time, but tutorials abound!
 - Also, Java Virtual Machine (JVM) for motes coming to town
INTRODUCTION: Instructor Background

Timothy D. Cole, wbi@mac.com, 813.468.6233 (813.205.2661)

- **Education**
 - JHU undergraduate (BES/EE) & graduate (MSEE, MS) degrees
 - Univ. of Alabama, physics

- **Work Experience**
 - JHU/APL – SSD (4 years), Space Dept (17 years)
 - Teledyne – BMDSCOM (5 years)
 - Raytheon – MUOS (1.5 y)
 - Northrop Grumman IT (TASC) – National Intel (*last* 4 years)
 - DARPA NEST & EXANT Programs
 - DIA ANDSC/D Program
 - IRaD, Micro-Laser Radar (MLR), Sensor Exfil Relay Integration (SERI), PulseNET™

- **MOTE PROGRAMS:**
 - NEST: 2000-2005 DARPA Embedded Sensor Technology
 - ANSC/D: 2005 DIA Motefield/Sensor Integration and Test
 - MLR/SERI:2006-2007 NGIT IRaD Motefield R&D
INTRODUCTION: Concepts involved

| 1. **Mote core** (fundamental): *radio-stack*, low-power *microprocessor* systems, power distribution, memory, uC/uP, data acquisition microsystems (ADC). |
| 2. **Programming environment.** Real-time, event-driven, with OTA programming, deluge, distributed processing (middleware) |
| 3. **Low-power.** Mote design, field design, overall architecture regulation & distribution, |
| 4. **Localization.** Autonomous (iterative) solutions, GPS chipset, & interface(s). |
| 5. **Sensor modalities.** Design goals and objectives. descriptions and examples of mote passive and active (e.g., ultra wideband, UWB) sensors |
| 6. **RF propagation.** Multi-path, fading, scattering, attenuation at ground level. RF reliability. |
| 8. **Mote Field Architecture.** Mote field logistics. Mote field initialization. Relay definition and requirements. Backhaul data communications: Cellular, SATCOM, LP-SEIWG-005A. |
| 11. **Situational Awareness.** Situational displays employed. Sensor injection design rules and examples - capabilities and examples, including: C2PC, COT, Falcon View, PULSEnet. |
INTRODUCTION: Mote subsystems

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.
INTRODUCTION: Motivation

- Evolution of Computing

 One to Many
 Billions of Computers

 One to One
 Millions of Computers

 Many to One
 Thousands of Computers
INTRODUCTION: Motivation

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

In the ultimate volumes
INTRODUCTION: Motivation

- Ad hoc networking of sensors – power in numbers
 - Ad hoc, meaning what?
 - Smart reconnaissance?
 - Mission types served?

- Concept of using small (<30 in³) micro-sensors (referred to as “motes”) within a wireless ad hoc network
 - Why not use sophisticated sensors? ($/km², agility, SPOF, versatility)
 - Through distributed processing of sensory signals within a networked field, motes can accomplish a myriad of tasks.
 - Mote “fields” can be applied using numerous configurations that allow for novel security and/or military applications.
INTRODUCTION: WSN Overview

A wireless sensor network (WSN) is a wireless network consisting of spatially distributed autonomous devices using sensors to cooperatively monitor physical or environmental conditions (temperature, sound, vibration, pressure, motion, chem) at different locations.

- Originally motivated by military applications, as battlefield surveillance.
- Now used in many civilian application areas.

In addition to one or more sensors, each node in a sensor network is typically equipped with a radio transceiver or other wireless communications device, a small microcontroller, and an energy source, usually a battery.

- The envisaged size of a single sensor node vary from shoebox-sized to devices the size of grain of dust -- functioning 'motes' of genuine microscopic dimensions yet to be created.
- The expected cost of sensor nodes is similarly variable, ranging from hundreds of dollars to a few cents, depending on size of sensor network & complexity required of individual nodes.
- Size and cost constraints on sensor nodes result in corresponding constraints on resources such as energy, memory, computational speed and bandwidth.

A sensor network constitutes a wireless ad hoc network, meaning that it each sensor supports a multi-hop routing algorithm (several nodes may forward data packets to the base station).
INTRODUCTION: WSN Overview

- Unique characteristics of a WSN require:
 * Small-scale sensor nodes
 * Limited power (ample capacity and supply, harvest and/or storage)
 * Harsh environmental conditions
 * Node failures tolerance
 * Ad hoc placement and localization of nodes
 * Dynamic network topology
 * Communication link failures
 * Heterogeneity of nodes
 * Large scale deployment
 * Unattended operation (command, control, data extraction)
 * Integration into an unified system capability
INTRODUCTION: WSN Overview

- Motes (nodes) can be imagined as small computers, extremely basic in terms of their interfaces and their components.
 - Consist of a processing unit with limited computational power and limited memory
 - Sensors (including specific conditioning circuitry)
 - Communication device (usually radio transceivers or alternatively optical), and a power source usually in the form of a battery.
 - Other possible inclusions are energy harvesting modules, secondary ASICs, and possibly secondary communication devices (e.g. RS-232 or USB).

- More field architecture requires
 - Large numbers of motes
 - Adherence to RF-range, network reliability, terrain (topography), and sensor performance
 - Typically, exfiltration occurs via base stations are one or more distinguished components of the WSN with much more computational, energy and communication resources -- gateway between sensor nodes and GIG (end users)
Recent excitement comes from cost per unit and ability to use large numbers of ad hoc nodes to autonomously instrument any objective;

- industrial
- commercial
- environmental
- military
- governmental

These characteristics combine to address a plethora of data AND communication intensive missions via a cost-effective and adaptable approach.
INTRODUCTION: Final final thoughts...
AGENDA

- INTRODUCTION
- BACKGROUND
- MOTE DESIGN
- CASE STUDIES
- DESIGN CONSIDERATIONS
BACKGROUND: Agenda

- Historical/Evolution/Revolution
- Seminal Program (DARPA’s NEST)
- Mote Defined
- Integration with the World
- Subsystem considerations
- Interface considerations
- Overview of Applications
BACKGROUND: The IC Revolution

1st Transistor, 1947

TI REGENCY TR-1, 1955, $450 (today)

Sony TR-610, 1958

1st Integrated Circuit, ~1958

Integrated Circuit, 1963

Today ~$5
BACKGROUND: Computer Revolution

Original IBM PC (1981) vs. MICAZ Mote (2005)

<table>
<thead>
<tr>
<th></th>
<th>Original IBM PC (1981)</th>
<th>MICAZ Mote (2005)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock Speed</td>
<td>4.77 MHz</td>
<td>4 MHz</td>
</tr>
<tr>
<td>RAM</td>
<td>16-256 KB RAM</td>
<td>128 KB RAM</td>
</tr>
<tr>
<td>Floppies</td>
<td>160 KB Floppies</td>
<td>512 KB Flash</td>
</tr>
<tr>
<td>Cost</td>
<td>~ $6K (today)</td>
<td>~ $35</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>~ 64 W</td>
<td>~14 mW</td>
</tr>
<tr>
<td>Size</td>
<td>25 lb, 19.5 x 5.5 x 16 inch</td>
<td>0.5 oz, 2.25 x 1.25 x 0.25 inch</td>
</tr>
</tbody>
</table>
BACKGROUND:

Wireless (cellular) technology evolves
BACKGROUND:
µP & wireless combine, following Moore’s law

Gordon E. Moore, Intel CEO, 2x transistor count/IC every 2 years

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.
BACKGROUND: Wireless Revolution

Small size, low-cost, low-power, ubiquitous!

Investment in infrastructure!
BACKGROUND: The wireless evolution

Size reduction of cellular telephones

- Chicago Trial Unit
- Early AMPS
- Commercial Service Trunk Mountable
- Transportable Terminal
- Portable
- MicroTAC
- MicroTAC Lite
- PCMCi
- Soft Radio

Year:
- 1978
- 1982
- 1986
- 1990
- 1994
- 1998
- 2002
BACKGROUND: Integration with worldwide data communication architectures

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.
BACKGROUND: Autonomy + Sensors + RF + worldwide distribution = new missions

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.
BACKGROUND: Micro-Electro-Mechanical-Systems (MEMS)

Sensor uses electrochemical and photonic properties to perform bioanalysis
BACKGROUND: Use of small RF-connected nodes to perform complex tasks

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.
BACKGROUND: Groundswell of WSN & associated technologies

- **Reasons for wireless networks**
 - Low Power/Small Physical Size
 - Reduced setup costs (no wires needed)
 - Ability to monitor remote test sites
 - Ability to monitor large areas with minimal hardware
 - Capability to monitor data in real time
 - Great versatility (programmable/upgradeable)

- **Combination of emerging technologies into unified system approaches requiring distributed measurement capabilities**
 - Existing backbone data communication systems (e.g., SATCOM, GSM, CDMA, IP)
 - *Borrowed* RF technology off cellular technologies & infrastructures
 - *Borrowed* processing technology off device technologies & infrastructures
 - *Borrowed* embracement of distributed processing (recall The Mersenne prime search formed 1996, -- a new world-record Mersenne prime discovered every year; also SETI@home originated in a conversation w/ David Gedye & Craig Kasnov in 1994. In May 1999, after several months of testing, the project launched. 15 December 2005, turned off server of SETI@home Classic, ending the largest computation in history.)
 - Arrival of low-power, low-cost sensor modalities (e.g., MEMS)
BACKGROUND: Evolution of Technologies used in WSN

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.
In 2000, DARPA sought novel approaches to the design and implementation of software for networked embedded systems.

- Embedded information processing primary source for superiority in weapon systems.
- Wave of inexpensive MEMS-based sensors and actuators and continued progress in photonics and communication technology accelerated this trend.
- Weapon systems increasingly “information rich,” where embedded monitoring, control & diagnostic functions penetrate deeper with smaller granularity in physical component structures.

Separation of physical and information processing architectures not sustainable.

- Strong mutual interdependence requires fusion at fine levels of granularity, i.e. the distribution of information processing among physical components.
- Coordinated operation of distributed embedded systems makes embedding, distribution, & coordination = fundamental technical challenge for embedded software.
BACKGROUND: DARPA NEST

- **BAA #01-06**
 Networked Embedded Software Technology (NEST)
 CBD Reference
 Networked Embedded Software Technology (NEST)
 SOL BAA 01-06 DUE: 01/05/2001
 POC: DR. JANOS SZTIPANOVITS, DARPA/ITO
 E-Mail: baa01-06@darpa.mil
 FAX: (703) 522-7161

- **What is NEST trying to do?**
 - Develop technology for building dependable, real-time, distributed, embedded applications comprising 100-100,000 simple computing nodes:
 1. Provide **formally verified** algorithms and code for real-time coordination in networked embedded systems
 2. Develop theory and technology for **synthesis methods** that are embeddable in real-time systems.
 3. Develop methods and tools for the automated composition and customization of coordination services with **guaranteed** properties.
BACKGROUND: NEST “Players”

- AFRL
- UCB
- UVA
- OSU
- Vanderbilt
- ...
- Northrop Grumman
- Raytheon
- Crossbow
- ...
- Intel
- MITRE
- Kestrel
- CACI
- ...

❖ Countless “fathers” of SOWN/WSN, motes, etc, countless “Firsts” & “successes”
❖ Insure middleware and/or hardware employed does what it claims!
❖ At Issue:
 ❖ BIG on R&D
 ❖ typical 6.1, 6.2
 ❖ applications flow due to “opportunities”
BACKGROUND: *System-level technology*

NEST assessments --> DARPA ExANT Program

Simultaneous motes; net & tracking

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>XSM/XSS Tier2 (OSU+)</td>
</tr>
<tr>
<td>2004</td>
<td>ExSCAL</td>
</tr>
<tr>
<td></td>
<td>VigilNet</td>
</tr>
<tr>
<td></td>
<td>TASC T&I</td>
</tr>
<tr>
<td>2005</td>
<td>ExANT E2E (TASC LSI)</td>
</tr>
<tr>
<td>2006</td>
<td>ANSCD (TASC)</td>
</tr>
</tbody>
</table>

Important Dates

- **LineInTheSand** Aug 03
- **CLEAN POINT** Dec 04
- **ANSCD** Sep 05
- **ExA FA1** Mar 06
- **DEMO** Nov 06

Successful Assessments Evolved from Successful R&D Contributions
BACKGROUND: Let’s get technical…
So what constitutes a mote, motefield, and/or a WSN???

What is a mote?

- What are the mote subsystems?
 - How do motes interact?
 - How are mote cores similar?
 - How do mote cores differ?
 - Which sensors?

- How do you design and create mote software (middleware)

- What is the power behind netted sensors (motefield)?

- How do wireless sensor networks connect to the real world? And how do they interface to the existing data communication networks?
 - What are the interfaces?
 - Why pick one exfiltration scheme over another?
 - How do you deploy the field?
 - …
BACKGROUND: What is a mote?

... “MOTE” ...

- “Tiny piece of anything”
- Low-power (RF) transceiver

Microcontroller system
 - Clocks
 - Memory
 - I/O
 - ADC

Operating system
Programming language
Simulation environment
Debugger
BACKGROUND: Concepts involved (Tmote Sky diagram), The Mote Core

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Microcomputer (w/ADC)
BACKGROUND: Concepts involved (Tmote Sky), Mote Core Implementation (note USB)

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.
BACKGROUND: Simple Sensor Nodes

Mote ≡ Transducer (sensors) + Motecore (μC, Radio stack, RAM, power/dist)

- Resource-constrained sensing & reporting
- Application-specific (embedded software)
- Data-centric routing; node = independent data collector
- Provide high-resolution information from array of nodes.
- Unattended, self-sufficient power sourced (e.g., batteries)
 - Energy/transmit-bit v. processed instruction energy
 - Operational duration
 - Energy battle: RF Tx v. sensor op v. μP-cycles

© Timothy D. Cole, 2008
BACKGROUND: WSN Vendors and Products

MOTES/NODES:
- BTnode rev2
- BTnode rev3
- Ember
- eyesIFXv1
- eyesIFXv2.1
- FireFly
- Fleck
- Imote
- Imote2
- Mica
- Mica2
- Mica2Dot
- MicaZ
- Particles
- Rene
- ScatterWeb
- Sensinode
- SHIMMER
- SquidBee
- Sun SPOT
- Telos
- TinyNode 584
- Tmote Mini
- Tmote Sky
- T-Nodes
- WeBee
- WeC
- WiseNet

PROCESSORS:
- ARM7
- Atmel AVR
- Intel Xscale
- Intel 8051
- PIC
- TI MSP430

RADIO STACKS:
- Chipcon CC1000
- Chipcon CC1020
- Chipcon CC2420
- Xemics XE1205
- 802.15.4 Chipsets and SoC
BACKGROUND: So what would a WSN do for you?

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.
BACKGROUND: Differentiation of WSN from other technologies such as RFID

- Small computers with wireless capability
- Alternative to RFID

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.
BACKGROUND: so why WSN-based sensing vs. “traditional” sensors?
BACKGROUND: Integration of motes (motefield) into the end-user’s path

REQUIRES/DESIRESES

• **Exfiltration path (RELAY function)**
 - mote-based processing minimal
 - field-wide processing
 - extended RF range, at *ground* level

• **Worldwide (GIG) access**

• **Standardized situational awareness display(s) & GUI**
 - C2PC
 - COT
 - FalconView …
 - GoogleEarth (KML)

• **Sensor-web enablement (SWE)**
 - Open Geospatial Consortium (OGC) Standards
 - Northrop Grumman --> PULSENet™
 … MITRE, iGOV, SAIC, Raytheon, Sun Microsystem …

• **Diagnostic testing apparatus (throughout life-cycle)**
BACKGROUND: Local/IP network

WISENET - SYSTEM BLOCK DIAGRAM

CLIENT
- INTERNET
 - HTTP
 - TCP/IP
 - WEB BROWSER

SERVER
- HTTP SERVER
 - WEB PROGRAM
 - SQL DATABASE
 - WISEDB

SENSOR MOTE NETWORK
- GATEWAY
- OFFICE #1
- OFFICE #2
- LAB A
- LAB B
- 900 MHz RF COMM
- RS-232 SERIAL

DATA ANALYSIS SUBSYSTEM
- DASHED LINES

DATA ACQUISITION SUBSYSTEM
- DASHED LINES
BACKGROUND: Basic architecture of motefields (netted sensors)
BACKGROUND: Worldwide integrated motefield

© Timothy D. Cole, 2008
BACKGROUND: Preview of applications

- Border patrol, linear surveillance, little/no infrastructure
- Container tracking; numerous surveillance areas, multiple situations in close quarters, status tracking
BACKGROUND: Evolving mission and dynamics

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.
BACKGROUND: What are others doing?

- Health care and emergency response
- Public safety and first responders
- Monitoring critical infrastructure
- Rail industry
- Logistics
- Asset management
- Smart toys

Essentially, cross-industry applications where physical data is necessary or optimizes the application.
BACKGROUND: Status -- Technology Maturity

Five (5) Key Characteristics –

1. Processor – already mature and at production volume
2. Network – already self-configuring and self-healing mesh
3. Power – conservation strategies available and successful
4. Software / Integration – availability of open source and/or offers standards-based
5. Packaging – can be engineered to necessary environmental conditions
BACKGROUND: Next step -- push towards standards

Previous Approaches
- Non-standards based
- Costly embedded programming
- No base platform services
- Code reusability limited
- Application tied to HW
- Minimum 18mo+ dev cycle

Emerging Approach
- OGC (Open Geospatial Consortium)
- Standards based
- Java programming
 - Scalable platform services provided
 - Better code reusability
 - Application more independent of HW
 - 1-2 mo dev equiv

--> Which leads to –
- Reduced implementation costs
- Faster time to market
- Scalability thru standards
OBJECTIVES

- Design, develop, integrate & demonstrate middleware deployed on a mini-sensor network of thousands of sensors capable of:
 - self organizing
 - grouping
 - localizing
 - geo-referencing
 - power managing
 - reprogramming
 - detecting
 - categorizing
 - reporting presence of physical entities

- **Final product**
 - Creation of middleware applications & services library that conform to Common Architecture Framework.
 - Sensor services and applications library with re-use utility as part of a transition strategy.

GOALS

- Develop technology, using sensing/processing nodes, that address:
 - reliability
 - robustness
 - real-time
 - distributed sensing and processing
 - enable embedded applications
 - scalable
 - Demonstrate technology capabilities for operationally-relevant applications
 - Integrate application outputs with accepted end user dissemination architectures
 - Develop foundation software services for exploitation of large networks based upon wireless sensing/processing nodes.
 - Demonstrate required capabilities in realistic environments for technology transition.

BACKGROUND: Recap of WSN -- objective/goals
BACKGROUND: Now to implement....

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.
BACKGROUND: Rest of the course, break down

- Introduction
- Background
- Motes
- Architecture
- Case Studies
- Design Considerations
 - Localization
 - Power
- Refs

Hardware
Network Mgmt Syst (NMS)
Software (IDE, SDK)
Sensor Modalities
You have enjoyed ATI's preview of

Self-Organizing Wireless Networks

Please post your comments and questions to our blog:

http://www.aticourses.com/wordpress-2.7/weblog1/

Sign-up for ATI's monthly Course Schedule Updates:

http://www.aticourses.com/email_signup_page.html