Professional Development Short Course On:

Propagation Effects for Radar & Comm Systems

Instructor:

G. Daniel Dockery

ATI Course Schedule: http://www.ATIcourses.com/schedule.htm
Boost Your Skills with On-Site Courses Tailored to Your Needs

The Applied Technology Institute specializes in training programs for technical professionals. Our courses keep you current in the state-of-the-art technology that is essential to keep your company on the cutting edge in today’s highly competitive marketplace. Since 1984, ATI has earned the trust of training departments nationwide, and has presented on-site training at the major Navy, Air Force and NASA centers, and for a large number of contractors. Our training increases effectiveness and productivity. Learn from the proven best.

For a Free On-Site Quote Visit Us At: http://www.ATIcourses.com/free_onsite_quote.asp

For Our Current Public Course Schedule Go To: http://www.ATIcourses.com/schedule.htm
OUTLINE

• Part 1: Over-Sea Propagation
• Part 2: Scalar Parabolic Equation (PE) Algorithms
• Part 3: Over-Land Propagation
• Part 4: 3-D Vector PE Modeling
Part 1 Outline: Over-Sea Propagation

- Introduction & Radar Equation
- Surface Reflection
- Multipath
- Rough Sea Effects
- Spherical Earth Diffraction & Radio Horizon
- Physical Optics Models
- Atmospheric Refractivity
- Atmospheric Measurements
- Evaporation Ducting
- Synoptic Weather Factors
- Sea Clutter
- HF Propagation
Radar Equation

We begin by reviewing the basic monostatic radar range equation describing received power for a radar system:

\[P_r = \frac{P_t G_t G_r \lambda^2 PF^4 \sigma_{RCS}}{(4\pi)^3 r^4 L} \]

Where
- \(P_t \) = Transmitted power
- \(G_t \) = Transmit antenna gain
- \(G_r \) = Receive antenna gain
- \(\lambda \) = Radar wavelength
- \(PF \) = Pattern Propagation Factor
- \(r \) = Slant range from radar to target
- \(\sigma_{RCS} \) = Target radar cross section (RCS)
- \(L \) = Miscellaneous system losses
Path Loss

Another quantity frequently used to describe propagation effects is path loss \((PL)\). The relation between \(PF\) and \(PL\) is

\[
PL = \frac{\lambda^2}{(4\pi)^2 r^2} PF^2
\]

This quantity is most useful for one-way communications problems, where the transmission equation can be written in terms of \(PL\) as

\[
P_r = P_t G_t G_r PF^2 \frac{\lambda^2}{(4\pi r)^2}
= P_t G_t G_r PL
\]

The results presented in this course will generally be presented in terms of \(PF^2\) or \(PF^4\).
Multipath Geometry

“Flat Earth”

Source

Earth’s Surface

$\theta = -\theta_g$

$r' = r_1 + r_2$

θ_g

r_1

r_2

r

“Direct” Field

Specularly Reflected Field
Multipath, 3 GHz, $z_s = 20$ m V-pol
Multipath, 3 GHz, $z_s = 20$ m at height = 200 m

![Graph showing multipath effects with PF2 dB vs range [km]. The graph includes two curves: H-pol (red) and V-pol (blue).]
Earth Horizon Geometry
4/3 earth horizon, $z_s = 20$ m, V-pol 3 GHz
4/3 earth horizon, \(z_s = 20 \) m, V-pol at height = 200 m

Horizon = 76.8 km
Effective Earth Radius (k-factor)

k_{eff} is such that $h=h'$ at each range when ray is drawn straight. Since ray curvature depends on refraction, k_{eff} also depends on refractive conditions.
Propagation Conditions
Horizontally Launched Rays

- **Subrefraction**
 \[\frac{dN}{dz} > 0 \]

- **Free Space**
 \[\frac{dN}{dz} = 0 \]

- **Standard**
 \[\frac{dN}{dz} = -39 \]

- **Superrefraction**
 \[\frac{dN}{dz} < -39 \]

- **Ducting**
 \[\frac{dN}{dz} < -157 \]

- **Ducting Threshold**
 \[\frac{dN}{dz} = -157 \]
Physical Optics Regions

interference region

PKF^2 [dB]

range [km]

Diffraction Region

Bold Interpolation Region
Physical Optics – PE Comparison

3 GHz, 100-ft Antenna Altitude, V-Pol.
Standard Atmosphere, 500 ft Altitude

Propagation Factor (dB)

Range (nmi)
Atmospheric refraction has a large effect on system performance – The “standard atmosphere” assumption is often inadequate.
Strong Surface-Based Ducting

Standard Atmosphere
$k_{eff} = 1.33$

One-Way Propagation Factor F^2
- S-Band
- 50-foot Antenna
- Narrow Beamwidth
 Sin(x)/x Pattern

Measured Surface-Based Duct Profile
Circulation Associated with Sea-Breeze

This situation results in the over-water conditions persisting some distance inland.
Advection Off Shore

This situation results in a surface duct increasing in height away from shore.
Helicopter Instrumentation

- Usual Aircraft: Bell Jet or Long Ranger
- Crew: Civilian Pilot & 2 APL Engineers
- Custom APL Instrumentation
Helicopter Vertical Profiles

Instrumented Helicopter

~600 m

Shipboard Radars

10 km
Helo Data Sample collected
September 2001 Near Camp Pendleton, CA

Outbound Run

STD

Land

Start:
2.07 9.90 15.43 22.73 29.66 37.19 44.38 51.10 56.90 69.75 62.79 65.04 nmi

Stop:
7.18 13.24 20.29 27.97 35.36 42.02 48.60 56.07 63.91 61.75 64.69 65.27 nmi
Propagation Diagram

- Measured Environment (all profiles)
Clutter Power Equation

Ignoring propagation effects, the monostatic radar equation for received clutter power by a pulsed radar may be written as

\[P_r = \frac{P_t G^2 \lambda^2 f^4}{(4\pi)^3 r^3} \left(\sigma_o \theta_B \frac{c\tau}{2} \right) \]

where \(G \) is the antenna gain assumed for both transmit & receive, \(f^4 \) is the two-way antenna pattern factor in the direction of the surface, \(c \) is the speed of light, \(\theta_B \) is the azimuth beamwidth, and \(\tau \) is the pulse width. This is the equation that has historically been inverted to estimate \(\sigma_o \) using data from clutter measurement campaigns. Thus, in empirically based models for \(\sigma_o \), the propagation effects are embedded in the normalized cross section.
Sea Clutter Geometry

Monostatic Pulsed Radar

\[c \tau / 2 \]

\[\theta_g \]

\[c \tau \sec \theta_g / 2 \]

\[\theta_B \]

\[r \theta_B \]
HF Propagation Mode Diagram

- Ionosphere
- Sky Wave
- Ground Wave
- Surface Wave
- Earth
Ionosphere Effects Summary

<table>
<thead>
<tr>
<th>Effect</th>
<th>Freq. Dep.</th>
<th>0.5 GHz</th>
<th>1 GHz</th>
<th>3 GHz</th>
<th>10 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faraday Rotation (deg)</td>
<td>$1/f^2$</td>
<td>432</td>
<td>108</td>
<td>12</td>
<td>1.1</td>
</tr>
<tr>
<td>Propagation Delay (µsec)</td>
<td>$1/f^2$</td>
<td>1</td>
<td>0.25</td>
<td>0.028</td>
<td>0.0025</td>
</tr>
<tr>
<td>Excess Range Delay (m)</td>
<td>$1/f^2$</td>
<td>300</td>
<td>75</td>
<td>8.3</td>
<td>0.75</td>
</tr>
<tr>
<td>Refraction (‘ or “”)</td>
<td>$1/f^2$</td>
<td>$<2.4’$</td>
<td>$<0.6’$</td>
<td>$<4.2”$</td>
<td>$<0.36”$</td>
</tr>
<tr>
<td>RMS Dir. Of Arrival (“”)</td>
<td>$1/f^2$</td>
<td>48”</td>
<td>12”</td>
<td>1.32”</td>
<td>0.12”</td>
</tr>
<tr>
<td>Absorption (auroral/polar) (dB)</td>
<td>$~1/f^2$</td>
<td>0.2</td>
<td>0.05</td>
<td>0.006</td>
<td>5×10^{-4}</td>
</tr>
<tr>
<td>Absorption (mid-latitude) (dB)</td>
<td>$1/f^2$</td>
<td><0.04</td>
<td><0.01</td>
<td><0.001</td>
<td>$<10^{-4}$</td>
</tr>
<tr>
<td>Dispersion (psec/Hz)</td>
<td>$1/f^3$</td>
<td>0.004</td>
<td>0.0005</td>
<td>1.9$\times10^{-5}$</td>
<td>5$\times10^{-7}$</td>
</tr>
<tr>
<td>Scintillation (dB)</td>
<td></td>
<td>>20</td>
<td>~10</td>
<td>~4</td>
<td></td>
</tr>
</tbody>
</table>

TEC=1.86×10^{18} m$^{-1}$; B=0.43 Gauss; Angle through ionosphere=30 deg
Part 2 Outline: Scalar PE Algorithms

• Summary of Modeling Approaches
• Vector & Scalar Wave Equations
• Parabolic Wave Equations
• Numerical Solution Approaches
• Basic and Mixed Fourier Split Step Solutions
• Source Modeling
• Surface Roughness
• Validation Examples
Part 3 Outline: Propagation Over Terrain

- Introduction
- Primary Terrain-related Effects
- Propagation Modeling Approaches
- Modeling Propagation Over Terrain With PE Models
- Refractivity Characteristics
- Land Clutter
Part 4 Outline:
3-D Vector PE Modeling

• Introduction

• 3-D Scalar PE Approaches (Brief Summary)

• 3-D Vector PE Modeling

• Modeling Propagation Over Terrain

• RCS Calculations (Brief Summary)
Boost Your Skills with On-Site Courses Tailored to Your Needs

The Applied Technology Institute specializes in training programs for technical professionals. Our courses keep you current in the state-of-the-art technology that is essential to keep your company on the cutting edge in today's highly competitive marketplace. For 20 years, we have earned the trust of training departments nationwide, and have presented on-site training at the major Navy, Air Force and NASA centers, and for a large number of contractors. Our training increases effectiveness and productivity. Learn from the proven best.

ATI’s on-site courses offer these cost-effective advantages:

• You design, control, and schedule the course.

• Since the program involves only your personnel, confidentiality is maintained. You can freely discuss company issues and programs. Classified programs can also be arranged.

• Your employees may attend all or only the most relevant part of the course.

• Our instructors are the best in the business, averaging 25 to 35 years of practical, real-world experience. Carefully selected for both technical expertise and teaching ability, they provide information that is practical and ready to use immediately.

• Our on-site programs can save your facility 30% to 50%, plus additional savings by eliminating employee travel time and expenses.

• The ATI Satisfaction Guarantee: You must be completely satisfied with our program.

We suggest you look at ATI course descriptions in this catalog and on the ATI website. Visit and bookmark ATI’s website at http://www.ATIcourses.com for descriptions of all of our courses in these areas:

• Communications & Computer Programming

• Radar/EW/Combat Systems

• Signal Processing & Information Technology

• Sonar & Acoustic Engineering

• Spacecraft & Satellite Engineering

I suggest that you read through these course descriptions and then call me personally, Jim Jenkins, at (410) 531-6034, and I’ll explain what we can do for you, what it will cost, and what you can expect in results and future capabilities.

Our training helps you and your organization remain competitive in this changing world.

Register online at www.aticourses.com or call ATI at 888.501.2100 or 410.531.6034