Professional Development Short Course On:

Missile Autopilots

Instructor:

Paul Jackson

ATI Course Schedule:
http://www.ATIcourses.com/schedule.htm
http://www.aticourses.com/introduction_missile_autopilots.htm

Applied Technology Institute (ATI)

Stay Current In Your Field • Broaden Your Knowledge • Increase Productivity

349 Berkshire Drive • Riva, Maryland 21140
888-501-2100 • 410-956-8805
Website: www.ATIcourses.com • Email: ATI@ATIcourses.com
Boost Your Skills with On-Site Courses Tailored to Your Needs

The Applied Technology Institute specializes in training programs for technical professionals. Our courses keep you current in the state-of-the-art technology that is essential to keep your company on the cutting edge in today’s highly competitive marketplace. Since 1984, ATI has earned the trust of training departments nationwide, and has presented on-site training at the major Navy, Air Force and NASA centers, and for a large number of contractors. Our training increases effectiveness and productivity. Learn from the proven best.

For a Free On-Site Quote Visit Us At: http://www.ATIcourses.com/free_onsite_quote.asp

For Our Current Public Course Schedule Go To: http://www.ATIcourses.com/schedule.htm
Autopilot Definition

An Autopilot is a System of Equations that Takes Commands and Missile State Measurements as Inputs and Computes a Control Command that Stabilizes the Missile and Forces the Missile State to Track the Command.

The Combination of Autopilot, Actuator, Airframe, and Sensors is Sometimes Called the "Autopilot." Meaning Should be Clear from Context.
Autopilot Components

- Autopilot
 - Mathematical System of Equations
 - Implemented Digital or Analog
 - External Command and Measurements are Inputs
 - Control Command is Output

- Actuator
 - Mechanical Device that Effects a Variable Force and Moment on Airframe
 - Fin, Nozzle, ...

- Airframe
 - Missile Body Including Fixed Aerodynamic Surfaces
 - Experiences Aerodynamic Lift and Moment

- Sensor
 - Mechanical Device to Sense Missile Motion
 - Accelerometer, Gyroscope, ...
Example Applications

- Acceleration Autopilot
 - Control Missile Acceleration Perpendicular to Airframe
 - Interceptors
- Altitude Autopilot
 - Control Missile Altitude
 - Cruise Missiles
- Terrain Following
 - Control Missile Clearance Relative to Terrain
 - Cruise Missiles
- Pitchover Autopilot
 - Control Missile Attitude
 - Missile Boost Phase
- Others
Day 1

- Equations of Motion
- Linear Systems
- Frequency Response
- Aerodynamics
- Feedback Control
Day 2

- Nyquist Stability Criterion
- Root Locus
- Compensator Design
- Hardware
- Autopilot Design Requirements
- Acceleration Autopilot
- Three Loop Autopilot
- Roll Control
Day 3

- Altitude Control
- Pitch Over Autopilot
- Flexible Modes
- Gain Scheduling
- Discretization
- Hardware Nonlinearities
- Skid-to-Turn Autopilot
- Bank-to-Turn Autopilot
Day 4

- Airframe Design Trade Study
- Linear Quadratic Regulator
- Multivariable Stability
- H-Infinity Control
Aerodynamic Stability

Missile is Aerodynamically Stable at a Given Trim Condition if it Tends to Maintain its Trim Condition when Excited by External Disturbances

Consider the Previous Plots. At the Trim Condition a Positive Perturbation to α Results in a Negative Moment on the Airframe that Tends to Restore the Airframe to the Trim Condition

Conclusion: If the M vs. α Curve has a Negative (Positive) Slope at the Trim Condition, the Missile is Aerodynamically Stable (Unstable)

Aerodynamic Stability also called Static Stability
3D Aerodynamic Poles

- 3D Model has Five States
 - Angle-of-Attack, Sideslip, Pitch, Yaw, Roll Rate
- Two (Complex) Poles Associated with Pitch Dynamics are Called "Short Period (Weathercock)"
- Two (Complex) Poles Associated with Yaw Dynamics are Called "Dutch Roll"
- One Pole Associated with Roll Dynamics is Called "Roll Subsidence"
- Aerodynamic Coupling can Sometimes Obscure Relationship Between Poles and States
Acceleration Feedback Summary

- Lead Compensation Ineffective Because Compensation Zero is Too Close or Right of Dominant Closed Loop Poles
- Cancellation Ineffective Because of Poor Disturbance Rejection Properties
 - Using Complex Zeros to Pull Airframe Poles to Left (Combination of Above Strategies) Could Still Suffer from Same Problems
Response to Disturbance

Pitch Rate Response to Angular Acceleration Impulse Disturbance (e.g. Pitch Moment due to Change in Sideslip, Wind Gust)

Body Rate Feedback Quickly Damps Out Disturbance Inputs
Flexible Mode Modeling

Flexible Mode Dynamics Modeled in Parallel to Rigid Body Dynamics for All Harmonics of Interest
Gain Scheduled Autopilot Tracks the Command
Delp/Dely Compensated Response

Control Cross Coupling Compensation Effectively Eliminates Roll Transient

in addition to pitch/yaw, alpha/beta compensation
Acceleration Response

- Acceleration Response Nearly Matches Desired Model
- Stable Airframe Slightly Slower
Dynamics Model

- Assumes Small Angle for TVC Deflection
- No Aerodynamic Induced Moment
- Subsonic, Slender Body
- Assume Fixed CG
 - Typically Shifts as Rocket Motor Burns
 - Might Have to Gain Schedule

\[\dot{\theta} = \frac{TL}{J} \delta \]

\(T = 5800 \text{ lb} \)
\(L = 7 \text{ ft} \)
\(J = 2800 \text{ ft-lb-sec}^2 \)
Boost Your Skills with On-Site Courses Tailored to Your Needs

The Applied Technology Institute specializes in training programs for technical professionals. Our courses keep you current in the state-of-the-art technology that is essential to keep your company on the cutting edge in today's highly competitive marketplace. For 20 years, we have earned the trust of training departments nationwide, and have presented on-site training at the major Navy, Air Force and NASA centers, and for a large number of contractors. Our training increases effectiveness and productivity. Learn from the proven best.

ATI’s on-site courses offer these cost-effective advantages:

• You design, control, and schedule the course.

• Since the program involves only your personnel, confidentiality is maintained. You can freely discuss company issues and programs. Classified programs can also be arranged.

• Your employees may attend all or only the most relevant part of the course.

• Our instructors are the best in the business, averaging 25 to 35 years of practical, real-world experience. Carefully selected for both technical expertise and teaching ability, they provide information that is practical and ready to use immediately.

• Our on-site programs can save your facility 30% to 50%, plus additional savings by eliminating employee travel time and expenses.

• The ATI Satisfaction Guarantee: You must be completely satisfied with our program.

We suggest you look at ATI course descriptions in this catalog and on the ATI website. Visit and bookmark ATI’s website at http://www.ATIcourses.com for descriptions of all of our courses in these areas:

• Communications & Computer Programming

• Radar/ EW/ Combat Systems

• Signal Processing & Information Technology

• Sonar & Acoustic Engineering

• Spacecraft & Satellite Engineering

I suggest that you read through these course descriptions and then call me personally, Jim Jenkins, at (410) 531-6034, and I’ll explain what we can do for you, what it will cost, and what you can expect in results and future capabilities.

Our training helps you and your organization remain competitive in this changing world.

Register online at www.aticourses.com or call ATI at 888.501.2100 or 410.531.6034