Professional Development Short Course On:

C4ISR Requirements, Principles, and Systems

Instructor:

William J. Gecke

ATI Course Schedule: http://www.ATIcourses.com/schedule.htm
ATI's C4ISR Requirements: http://www.aticourses.com/c4isr_requirement_principles.htm
Boost Your Skills
with On-Site Courses
Tailored to Your Needs

The Applied Technology Institute specializes in training programs for technical professionals. Our courses keep you current in the state-of-the-art technology that is essential to keep your company on the cutting edge in today’s highly competitive marketplace. Since 1984, ATI has earned the trust of training departments nationwide, and has presented on-site training at the major Navy, Air Force and NASA centers, and for a large number of contractors. Our training increases effectiveness and productivity. Learn from the proven best.

For a Free On-Site Quote Visit Us At: http://www.ATIcourses.com/free_onsite_quote.asp

For Our Current Public Course Schedule Go To: http://www.ATIcourses.com/schedule.htm
Recent TCT Approach

- SIPRNET Chat Imagery
- Formed target tracks for waiting F-15
- Imagery A/C control
- MCE (GH) (Beale, CA)
- WAN
- CGS(U2) (Beale, CA)
- Intel Unit (NV); target coordinates; ID
- U2 Global Hawk
- F15 Holding orbit
- TADII
- CAOC
 - AOC Ops GH Liaison Officer
 - Chat
 - TCT Cell
 - HUMINT

© W.J.Geckle
Synthetic Aperture Radar (SAR)

- Resolution for real aperture is \(\theta_B \approx \frac{\lambda}{D} \)
- At a distance \(R \) from the sensor, a region is illuminated of length \(L = R \theta_B \)
- The aperture may be synthesized for entire length, \(L \), yielding a synthetic beamwidth \(\theta_S \approx \frac{\lambda}{2L} \) i.e., as if \(D = 2L \)
- Ground resolution at \(R \) is then \(\delta_{CR} = R \theta_S = \frac{D}{2} \) (strip mode)

Smaller real antenna >> greater resolution; in spot mode, illuminate loner to reduce \(\delta_{CR} \)

- Usually processed with multiple looks at lesser resolution, looks are incoherently added to reduce speckle

Note: \(\frac{L}{R} = \frac{\lambda}{D} \)
<table>
<thead>
<tr>
<th></th>
<th>Link-11</th>
<th>Link-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addresses</td>
<td>3 Digit Octal</td>
<td>5 Digit Octal</td>
</tr>
<tr>
<td>Track #’s</td>
<td>4000+</td>
<td>524,000+</td>
</tr>
<tr>
<td>Track Q</td>
<td>0-7</td>
<td>0-15</td>
</tr>
<tr>
<td>Track ID</td>
<td>3 fields</td>
<td>5 fields</td>
</tr>
<tr>
<td>Position res.</td>
<td>500 yds</td>
<td>32 ft</td>
</tr>
<tr>
<td>Air Speed Res.</td>
<td>28 dmh</td>
<td>2 dmh</td>
</tr>
</tbody>
</table>

© W.J.Geckle
Transformational Communications System (TCS) – Notional
USAF, Intelligence Community SATCOM Architecture for 2010-2020

$100 B

Protected
Milstar I,II: geosync., polar
Freeflyer Polar
AEHF
TSAT

Wideband
DSCS
WB Gapfiller
TC-WS (Adv. WB System)

Narrowband
UHF: FLTSAT COM
UFO
UHF Gapfiller

2002 2008 © W.J.Geckle 2014 2020
MC2C

- Terrestrial BB: Fixed, Mobile Users, Packets (Tbps)
- ISR Edge Services: MP-CDL (100 Mbps)
 - Link-22
 - SINCgars
- Airborne Backbone: Persistent, High BW (Gbps)
- Tactical Edge Services (TADILs)
 - Link 16 (500 kbps)
 - WNW (2 Mbps)
- MC2A: E-3, EC-130E, E-8, RC-135, OC-135B, EC-130H, E-4B (GMTI, SAR, C2, All-INTs, Air Tracking, etc.)
Products Overview (cont’d)

- **Seven essential products**
 - At least one per view
- **Nineteen support products**

<table>
<thead>
<tr>
<th>Applicable Architecture View</th>
<th>Product Reference</th>
<th>Architecture Product</th>
<th>Essential or Supporting</th>
<th>General Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Views (Context)</td>
<td>AV-1</td>
<td>Overview and Summary Information</td>
<td>Essential</td>
<td>Scope, purpose, intended users, environment depicted, analytical findings, if applicable (4.2.1.1)</td>
</tr>
<tr>
<td>All Views (Terms)</td>
<td>AV-2</td>
<td>Integrated Dictionary</td>
<td>Essential</td>
<td>Definitions of all terms used in all products (4.2.1.2)</td>
</tr>
<tr>
<td>Operational</td>
<td>OV-1</td>
<td>High-level Operational Concept Graphic</td>
<td>Essential</td>
<td>High-level graphical description of operational concept (high-level organizations, missions, geographic configuration, connectivity, etc.) (4.2.1.3)</td>
</tr>
<tr>
<td>Operational</td>
<td>OV-2</td>
<td>Operational Node Connectivity Description</td>
<td>Essential</td>
<td>Operational nodes, activities performed at each node, connectivities & information flow between nodes (4.2.1.4)</td>
</tr>
<tr>
<td>Operational</td>
<td>OV-3</td>
<td>Operational Information Exchange Matrices</td>
<td>Essential</td>
<td>Information exchanged between nodes and the relevant attributes of that exchange such as media, quality, quantity, and the level of interoperability required. (4.2.1.5)</td>
</tr>
<tr>
<td>Operational</td>
<td>OV-4</td>
<td>Command Relationships Chart</td>
<td>Supporting</td>
<td>Command, control, coordination relationships among organizations (4.2.2.1)</td>
</tr>
<tr>
<td>Operational</td>
<td>OV-5</td>
<td>Activity Model</td>
<td>Supporting</td>
<td>Activities, relationships among activities, I/Os, constraints (e.g., policy, guidance), and mechanisms that perform those activities. In addition to showing mechanisms, overlays can show other pertinent information. (4.2.2.2)</td>
</tr>
<tr>
<td>Operational</td>
<td>OV-6a</td>
<td>Operational Rules Model</td>
<td>Supporting</td>
<td>One of the three products used to describe operational activity sequence and timing that identifies the business rules that constrain the operation (4.2.2.3.1)</td>
</tr>
<tr>
<td>Operational</td>
<td>OV-6b</td>
<td>Operational State Transition Description</td>
<td>Supporting</td>
<td>One of the three products used to describe operational activity sequence and timing that identifies responses of a business process to events (4.2.2.3.2)</td>
</tr>
<tr>
<td>Operational</td>
<td>OV-6c</td>
<td>Operational Event/Trace Description</td>
<td>Supporting</td>
<td>One of the three products used to describe operational activity sequence and timing that traces the actions in a scenario or critical sequence of events. (4.2.2.3.3)</td>
</tr>
<tr>
<td>Operational</td>
<td>OV-7</td>
<td>Logical Data Model</td>
<td>Supporting</td>
<td>Documentation of the data requirements and structural business process rules of the Operational View. (4.2.2.4)</td>
</tr>
<tr>
<td>Systems</td>
<td>SV-1</td>
<td>System Interface Description</td>
<td>Essential</td>
<td>Identification of systems and system components and their interfaces, within and between nodes (4.2.1.6)</td>
</tr>
<tr>
<td>Systems</td>
<td>SV-2</td>
<td>Systems Communications Description</td>
<td>Supporting</td>
<td>Physical nodes and their related communications laydowns (4.2.2.5)</td>
</tr>
<tr>
<td>Systems</td>
<td>SV-3</td>
<td>Systems2 Matrix</td>
<td>Supporting</td>
<td>Relationships among systems given a architecture; can be designed to show relationships of interest, e.g., system-type interfaces, planned vs. existing interfaces, etc. (4.2.2.6)</td>
</tr>
<tr>
<td>Systems</td>
<td>SV-4</td>
<td>Systems Functionality Description</td>
<td>Supporting</td>
<td>Functions performed by systems and the information flow among system functions (4.2.2.7)</td>
</tr>
<tr>
<td>Systems</td>
<td>SV-5</td>
<td>Operational Activity to System Function Traceability Matrix</td>
<td>Supporting</td>
<td>Mapping of system functions back to operational activities (4.2.2.8)</td>
</tr>
<tr>
<td>Systems</td>
<td>SV-6</td>
<td>System Information Exchange Matrix</td>
<td>Supporting</td>
<td>Detailing of information exchanges among system elements, applications and H/W allocated to system elements (4.2.2.9)</td>
</tr>
<tr>
<td>Systems</td>
<td>SV-7</td>
<td>System Performance Parameters Matrix</td>
<td>Supporting</td>
<td>Performance characteristics of each system(s) hardware and software elements, for the appropriate timeframe(s) (4.2.2.10)</td>
</tr>
<tr>
<td>Systems</td>
<td>SV-8</td>
<td>System Evolution Description</td>
<td>Supporting</td>
<td>Planned incremental steps toward migrating a suite of systems to a more efficient suite, or toward evolving a current system to a future implementation (4.2.2.11)</td>
</tr>
<tr>
<td>Systems</td>
<td>SV-9</td>
<td>System Technology Forecast</td>
<td>Supporting</td>
<td>Emerging technologies and software/hardware products that are expected to be available in a given set of timeframes, and that will affect future development of the architecture (4.2.2.12)</td>
</tr>
<tr>
<td>Systems</td>
<td>SV-10a</td>
<td>Systems Rules Model</td>
<td>Supporting</td>
<td>One of three products used to describe systems activity sequence and timing -- Constraints that are imposed on systems functionality due to some aspect of systems design or implementation (4.2.2.13.1)</td>
</tr>
<tr>
<td>Systems</td>
<td>SV-10b</td>
<td>Systems State Transition Description</td>
<td>Supporting</td>
<td>One of three products used to describe systems activity sequence and timing -- Responses of a system to events (4.2.2.13.2)</td>
</tr>
<tr>
<td>Systems</td>
<td>SV-10c</td>
<td>Systems Event/Trace Description</td>
<td>Supporting</td>
<td>One of three products used to describe systems activity sequence and timing -- System-specific refinements of critical sequences of events described in the operational view (4.2.2.13.3)</td>
</tr>
<tr>
<td>Systems</td>
<td>SV-11</td>
<td>Physical Data Model</td>
<td>Supporting</td>
<td>Physical implementation of the information of the Logical Data Model, e.g., message formats, file structures, physical schema (4.2.2.14)</td>
</tr>
<tr>
<td>Technical</td>
<td>TV-1</td>
<td>Technical Architecture Profile</td>
<td>Essential</td>
<td>Extraction of standards that apply to the given architecture (4.2.1.7)</td>
</tr>
<tr>
<td>Technical</td>
<td>TV-2</td>
<td>Standards Technology Forecast</td>
<td>Supporting</td>
<td>Description of emerging standards that are expected to apply to the given architecture, within an appropriate set of timeframes (4.2.2.15)</td>
</tr>
</tbody>
</table>
IDEF1x

- Data Models
- NIST #184
- Independent and dependent elements

Discriminator (vehicle type) – double line indicates a complete set
JTA Hierarchy
New Acquisition Policy

Prerequisite: Integrated Architecture

5000.2 identifies specific regulatory requirements including C4ISR certification
Information Support Plan ISP

• **Introduction**

• **Analysis**
 – Information needs discovery and analysis
 – Questions and references provided in 6212.01C

• **Issues**
 – Refer to Operational Concept Matrix
 – Identify Operational Issue and Resolution Path
NCOW RM

NCOW Reference Model Overview
Reference Model Content

Version 0.9
BETA 2.0
BETA 1.5
BETA 1.0

Integrated Dictionary
From NCOW workshop 2003
T. Hagle

Overview and Summary Information
AV-1

High-Level Operational Concept Graphic
OV-1

Activity Model and Node Tree
OV-5

Target Technical View
TV-2

First description of Net-Centricity at the enterprise level
Power to the Edge

© W.J. Geckle
GIG - Who’s In?

- GIG includes nearly all interconnected, networked systems
- Non-GIG systems: stand-alone, embedded or self contained
- DOD and Intelligence Community Guidance for new and upgrades to legacy systems
DCGS Family of Systems

from DCGS CRD
Mission Assessment Process

Mission (JMA)

Operational process

Critical system path

Data collection – validate, verify

Measure Pk, Ps, latency, accuracy,…

Alternate system path

Information Exchange Requirements

More Specific Operational Concept

More General Operational Concept

System Architecture

Operational process

Critical system path

Alternate system path

© W.J.Geckle
Build IERs (6212)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>UJTL EVENT INFORMATION CHARACTER</td>
<td>SENDING NODE</td>
<td>RECEIVING NODE</td>
<td>Format</td>
<td>Classification</td>
<td>TIMELINE</td>
<td>CRITICAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employ Firepower</td>
<td>Targeting. Target ID, Target Location, Track Updates, L/B, L/L, Course, Speed, Altitude, Confidence</td>
<td>Operational/tactical C2 nodes and sensors</td>
<td>Operational/tactical C2 nodes and sensors</td>
<td>Secret/encrypted</td>
<td>Less than ZZ seconds</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(fictitious example)
Boost Your Skills with On-Site Courses Tailored to Your Needs

The Applied Technology Institute specializes in training programs for technical professionals. Our courses keep you current in the state-of-the-art technology that is essential to keep your company on the cutting edge in today's highly competitive marketplace. For 20 years, we have earned the trust of training departments nationwide, and have presented on-site training at the major Navy, Air Force and NASA centers, and for a large number of contractors. Our training increases effectiveness and productivity. Learn from the proven best.

ATI’s on-site courses offer these cost-effective advantages:

• You design, control, and schedule the course.

• Since the program involves only your personnel, confidentiality is maintained. You can freely discuss company issues and programs. Classified programs can also be arranged.

• Your employees may attend all or only the most relevant part of the course.

• Our instructors are the best in the business, averaging 25 to 35 years of practical, real-world experience. Carefully selected for both technical expertise and teaching ability, they provide information that is practical and ready to use immediately.

• Our on-site programs can save your facility 30% to 50%, plus additional savings by eliminating employee travel time and expenses.

• The ATI Satisfaction Guarantee: You must be completely satisfied with our program.

We suggest you look at ATI course descriptions in this catalog and on the ATI website. Visit and bookmark ATI’s website at http://www.ATIcourses.com for descriptions of all of our courses in these areas:

• Communications & Computer Programming

• Radar/ EW/ Combat Systems

• Signal Processing & Information Technology

• Sonar & Acoustic Engineering

• Spacecraft & Satellite Engineering

I suggest that you read through these course descriptions and then call me personally, Jim Jenkins, at (410) 531-6034, and I’ll explain what we can do for you, what it will cost, and what you can expect in results and future capabilities.

Our training helps you and your organization remain competitive in this changing world.