Propagation Effects for Radar & Comm Systems
3-Day Course
$1990 per person
Summary
This three-day course examines the atmospheric effects that influence the propagation characteristics of radar and communication signals at microwave and millimeter frequencies for both earth and earth-satellite scenarios. These include propagation in standard, ducting, and subrefractive atmospheres, attenuation due to the gaseous atmosphere, precipitation, and ionospheric effects. Propagation estimation techniques are given such as the Tropospheric Electromagnetic Parabolic Equation Routine (TEMPER) and Radio Physical Optics (RPO). Formulations for calculating attenuation due to the gaseous atmosphere and precipitation for terrestrial and earth-satellite scenarios employing International Telecommunication Union (ITU) models are reviewed. Case studies are presented from experimental line-of-sight, over-the-horizon, and earth-satellite communication systems. Example problems, calculation methods, and formulations are presented throughout the course for purpose of providing practical estimation tools.
Instructor
G. Daniel Dockery, received the B.S. degree in physics and the M.S. degree in electrical engineering from Virginia Polytechnic Institute and State University. Since joining The Johns Hopkins University Applied Physics Laboratory (JHU/APL) in 1983, he has been active in the areas of modeling EM propagation in the troposphere as well as predicting the impact of the environment on radar and communications systems. Mr. Dockery is a principal-author of the propagation and surface clutter models currently used by the Navy for high-fidelity system performance analyses at frequencies from HF to Ka-Band.
Contact this instructor (please mention course name in the subject line)