top header
top gradation HOME top vertical line top vertical line top vertical line top vertical line top vertical line top vertical line top vertical line menu gray
black line 2
menu gray tab More About ATI
menu blue ATI — Who We Are
white line
menu blue Contact ATI Courses
white line
menu blue List Of ATI Courses
white line
menu blue Attendees Testimonials
white line
menu blue The ATI FAQ Sheet
white line
menu blue Suggestions/Wait List
white line
menu blue New Courses
white line
menu blue Become an ATI Instructor
menu gray tab site resources
menu blue Acoustics & Sonar
white line
menu blue Rockets & Space
white line
menu blue GPS Technology
white line
menu blue ATI Blog
white line
menu blue ATI Space News
white line
menu blue ATI Site Map
white line
menu blue ATI Staff Tutorials
white line
menu blue ATI Sampler Page
white line
menu gray tab bar
menu gray tab courses
white line
menu blue Current Schedule
white line
menu blue Onsite Courses
white line
menu blue Register Online
white line
menu blue Request Brochure
white line
menu blue Free On-Site Price Quote
white line
menu blue Download Catalog
white line
menu blue Distance Learning
black line

Liquid Rocket Engines for Spacecraft

Pressure-Fed Propulsion Systems

Share |

Summary:

    Technical Training Short On Site Course Quote

    Liquid Rocket Engines have been used to propel Earth orbiting satellites and deep space interplanetary missions for the last five decades.
    This three-day course provides in-depth treatment of the fundamental concepts and technologies of modern spacecraft liquid propellant rocket engines. The course focuses on scientific and engineering foundations of pressure- fed, monopropellant, bipropellant, dual mode, and secondary combustion augmented thrusters for satellite orbit-raising and station-keeping operations. Thruster analyses; design; ground testing; flight operations; and lessons learned will be discussed in detail. Interactions of thrusters with the propulsion subsystem, and interfaces of the propulsion subsystem with other subsystems of spacecraft as they relate to the spacecraft overall design and operations will be discussed. The extensive set of course notes provides a concise reference for understanding virtually all aspects of modern spacecraft liquid thruster technologies. Each student will receive a copy of complete set of lecture notes and the relevant AIAA papers by the instructor and other authors.

    Tuition:

    Instructor:

    Instructor:

    G. P. Purohit, a retired Boeing Technical Fellow, is a recognized industry expert in Spacecraft Propulsion. He has worked virtually all aspects of spacecraft liquid propulsion systems and components for the past 35 years at JPL and at Boeing. He has published extensively on spacecraft propulsion. He received his MS and PhD in Mechanical Engineering from University of California, Los Angeles (UCLA). Dr. Purohit teaches graduate courses at USC on Spacecraft Propulsion and Satellite Thermal Control. He also teaches short courses on Propulsion at AIAA and UCLA where he has been cited as the Best Instructor. Dr. Purohit has served as Chair, ASME Liquid Propulsion Technical Committee, and as Technical Programs Vice Chair., AIAA Los Angeles Section. Dr. Purohit is the recipient of The AIAA Wyld Propulsion Award, NASA Exceptional Achievement Award, The US Government Eagle Award, and Boeing Technical Excellence Award

    Contact this instructor (please mention course name in the subject line)

    What You Will Learn:

    • Fundamentals of
      • Rocket Propulsion and Rocket Engines
      • Flow-Pressure drop of liquids and gases in thruster valves and injector orifices
      • Heat transfer in thrusters
    • Developing thruster specification requirements
    • Thruster Design and Analysis
    • Developing thruster ground hot-fire test matrix
    • Thruster hot-fire testing
    • Thruster test data analysis
    • Thruster flight and in-orbit operations
    • Thruster EOL operation for optimum propellant life technical issues involved in the successful planning, design, development, fabrication, deployment and operation of space systems

    Course Outline:

    1. Introduction: Course Overview: History of liquid rocket engines; Evolution of liquid propellant rocket engines from Second World War

    2. Rocket Engine Fundamentals and Definitions: Thrust, Impulse, Specific impulse, Impulse-bit, Thrust coefficient, Characteristic exhaust velocity, Catalytic decomposition, Combustion stoichiometry, Mixture ratio, Adiabatic flame temperature

    3. Monopropellant Rocket Engines: Hydrogen peroxide (H2O2) thrusters, Hydrazine (N2H4) thrusters, Catalytic decomposition reactions, Catalyst degradation mechanisms (catalyst bed voids, Catalyst bed poisoning)

    4. Early Bipropellant Rocket Engines: Early N2H4 / Nitric acid and Aerozine-50 / NTO bipropellant thrusters

    5. Current Bipropellant Rocket Engines: Disilicide-coated Columbium and Ir/Re chamber, hypergolic MMH/NTO orbit raising thrusters (100-lbf to 900-lbf class) and orbit maintenance thrusters (2-lbf to 25-lbf class)

    6. Future Dual Mode Rocket Engines: Disilicide-coated Columbium and Ir/Re chamber, hypergolic N2H4/NTO orbit raising thrusters (100-lbf class) and Platinum chamber orbit maintenance thrusters (5-lbf class)

    7. Secondary Combustion Augmented N2H4/NTO Thruster (SCAT): Nickel chamber, ability to operate in both mono- and bipropellant modes

    8. Bipropellant / Dual Mode Thruster Valves: Solenoid and Torque motor valves; Pressure actuated valves, Arc Suppressors, Valve testing (open/close response time; actuation cycles; flow-pressure drop, back-pressure relief feature, leakage, power, pull-in and drop-out voltage

    9. Bipropellant / Dual Mode Thruster Injectors: Showerhead, Platelet and Pintle injectors, Radiatively- and Regeneratively cooled injectors, Injectors for fuel film cooled (FFC) chambers), Rupe number, D/V “contact” time, Injector core momentum angle, oxidizer versus fuel lead Hydraulic Flip Injector coupling to combustion chamber and its effects on dribble volume and post-firing thermal soakback, Oxidizer Boiling, FORP ZOT, Thermal stresses, Deposits, Injector water-flow testing for stream quality and pressure drop

    10. Bipropellant/ Dual Mode Thruster Combustion Chamber Chamber materials and coatings, Chamber l/d ratio, Combustion instability, Thrust chamber burn-thru

    11. Nozzles: Straight conical and bell-shaped nozzle configurations

    12. Thruster Analyses: Steady state and pulse-mode performance, Startup & shutdown transients, Tail-off impulse, Thruster thermal analyses, Oxidizer boiling in injector orifices, Post-firing thermal soakback

    13. Thruster Ground Hot-Fire Testing: Test cell vacuum (vacuum pumps versus steam jet ejectors), Vertical versus Horizontal (nozzle-down) firing, Propellant saturation techniques, propellant temperature conditioning techniques, thrust measurement system, Pulse-mode flow measurement techniques, Oxidizer/fuel biasing, Propellant, valve and injector temperatures, Chamber temperature measurement, single species depletion, Data acquisition system (instrumentation response and data sampling rate), Propellant feed system flow-?P, Propellant feed system coupling, Developing test matrix, Test facility error analysis

    14. Spacecraft Flight Operations: Propulsion flight telemetry Propellant tank/ feed line pressures and temperatures, Valve and injector temperatures, Spacecraft dynamics parameters, Water hammer upon thruster valve closure, Single propellant species operation, Spacecraft end-of-life (EOL) de-orbit strategies

    
    
    Tuition:

    This course is not on the current schedule of open enrollment courses. If you are interested in attending this or another course as open enrollment, please contact us at (410) 956-8805 or at ati@aticourses.com and indicate the course name and number of students who wish to participate. ATI typically schedules open enrollment courses with a lead time of 3-5 months. Group courses can be presented at your facility at any time. For on-site pricing, request an on-site quote. You may also call us at (410) 956-8805 or email us at ati@aticourses.com.

spacer