Sonar Signal Processing

Course length:

3 Days


$2,090.00 excl.

Course dates

Interested in attending? Have a suggestion about running this course near you?
Register your interest now


This intensive short course provides an overview of sonar signal processing. Processing techniques applicable to bottom-mounted, hull-mounted, towed and sonobuoy systems will be discussed. Spectrum analysis, detection, classification, and tracking algorithms for passive and active systems will be examined and related to design factors. Advanced techniques such as high-resolution array-processing and matched field array processing, advanced signal processing techniques, and sonar automation will be covered. 

What You Will Learn:

  • Fundamental algorithms for signal processing.
  • Techniques for beam forming.
  • Trade-offs among active waveform designs.
  • Ocean medium effects.
  • Shallow water effects and issues
  • Optimal and adaptive processing


James W. Jenkins joined the Johns Hopkins University Applied Physics Laboratory in 1970 and has worked in ASW and sonar systems analysis. He has worked with system studies and at-sea testing with passive and active systems. He is currently a senior physicist investigating improved signal processing systems, APB, own-ship monitoring, and SSBN sonar. He has taught sonar and continuing education courses since 1977 and is the Director of the Applied Technology Institute (ATI).

Dr. Bruce Newhall has over 40 years experience in underwater acoustics, sonar, and signal processing. He was chief scientist for several large scale Navy experiments and the supervisor of the Acoustic and Electromagnetics Group at the Johns Hopkins Applied Physics Lab. He has served as Associate Editor for the IEEE Journal of Oceanic Engineering. In recognition of his innovative work, he is a fellow of the Acoustic Society, received the bronze medal from the NDIA and is the 2017 recipient of the Donald W. Tufts award in underwater acoustic signal processing from the IEEE.


Course Outline:

  1. Introduction to Sonar Signal Processing. Introduction to sonar detection systems and types of signal processing performed in sonar. Correlation processing, Fournier analysis, windowing, and ambiguity functions. Evaluation of probability of detection and false alarm rate for FFT and broadband signal processors.
  2. Beamforming and Array Processing. Beam patterns for sonar arrays, shading techniques for sidelobe control, beamformer implementation. Calculation of DI and array gain in directional noise fields.
  3. Passive Sonar Signal Processing. Review of signal characteristics, ambient noise, and platform noise. Passive system configurations and implementations. Spectral analysis and integration.
  4. Active Sonar Signal Processing. Waveform selection and ambiguity functions. Projector configurations. Reverberation and multipath effects. Receiver design.
  5. Passive and Active Designs and Implementations. Design specifications and trade-off examples will be worked, and actual sonar system implementations will be examined.
  6. Advanced Signal Processing Techniques.Advanced techniques for beamforming, detection, estimation, and classification will be explored. Optimal array processing. Data adaptive methods, super resolution spectral techniques, time-frequency representations and active/passive automated classification are among the advanced techniques that will be covered

Related courses