Exploring Data: Visualization

Course length:

3

Cost:

$2,090.00

Course dates

Interested in attending? Have a suggestion about running this course near you?
Register your interest now

Description

Visualization of data has become a mainstay in everyday life. Whether reading the newspaper or presenting viewgraphs to the board of directors, professionals are expected to be able to interpret and apply basic visualization techniques. Technical workers, engineers and scientists, need to have an even greater understanding of visualization techniques and methods. In general, though, the basic concepts of understanding the purposes of visualization, the building block concepts of visual perception, and the processes and methods for creating good visualizations are not required even in most technical degree programs. This course provides a “Visualization in a Nutshell” overview that provides the building blocks necessary for effective use of visualization.

What You Will Learn:

  • Decision support techniques: which type of visualization is appropriate
  • Appropriate visualization techniques for the spectrum of data types
  • Cross-discipline visualization methods and “tricks”
  • Leveraging color in visualizations
  • Use of data standards and tools
  • Capabilities of visualization toolsThis course is intended to provide a survey of information and techniques to students, giving them the basics needed to improve the ways they understand, access, and explore data.

Course Outline:

  • Overview
    • Why Visualization?
      • The Purposes for Visualization: Evaluation, Exploration, Presentation
  • Basics of Data
    • Data Elements – Values, Locations, Data Types, Dimensionality
    • Data Structures – Tables, Arrays, Volumes
    • Data – Univariate, Bivariate, Multi-variate
    • Data Relations – Linked Tables
    • Data Systems
    • Metadata – Vs. Data, Types, Purpose
  • Visualization
    • Purposes – Evaluation, Exploration, Presentation
    • Editorializing – Decision Support
    • Basics – Textons, Perceptual Grouping
    • Visualizing Column Data – Plotting Methods
    • Visualizing Grids
      • Images, Aspects of Images, Multi-Spectral Data
      • Manipulation, Analysis, Resolution, Intepolation
    • Color – Perception, Models, Computers and Methods
    • Visualizing Volumes – Transparency, Isosurfaces
    • Visualizing Relations – Entity-Relations & Graphs
    • Visualizing Polygons – Wireframes, Rendering, Shading
    • Visualizing the World – Basic Projections, Global, Local
    • N-dimensional Data – Perceiving Many Dimensions
    • Exploration Basics – Linking, Perspective and Interaction
    • Mixing Methods to Show Relationships
    • Manipulating Viewpoint – Animation, Brushing, Probes
    • Highlights for Improving Presentation Visualizations
    • Color, Grouping, Labeling, Clutter
  • Tools for Visualization
    • APIs & Libraries
    • Development Enviroments
      • CLI
      • Graphical
    • Applications
    • Which Tool?
    • User Interfaces
  • A Survey of Data Tools
    • Commercial
    • Shareware & Freeware
  • Web Browser-based Visualization
    • Intro –Why Visualize on the Web
    • Data Driven Documents D3.js: Web Standards: Foundation of D3 (HTML, SVG, CSS, JS, DOM)
    • Demos and Examples
    • Code Walk-through
    • Other Web Tools
    • Demos and Coding
    • Walk-throughs

Instructor(s):

  • Ted Meyer is currently a data scientist at the MITRE Corporation with a 30 year interdisciplinary background in visualization and data analysis, GIS systems, remote sensing and ISR, modeling and simulation, and operation research. Ted Meyer has worked for NASA, the National Geospatial-Intelligence Agency (NGA), and the US Army and Marine Corps to develop systems that interact with and provide data access to users. At the MITRE Corporation and Fortner Software he has lead efforts to build tools to provide users improved access and better insight into data. Mr. Meyer was the Information Architect for NASA’s groundbreaking Earth Science Data and Information System Project where he helped to design and implement the data architecture for EOSDIS.

     

     

  •  

    Ivan Ramiscal is a lead software systems engineer at the MITRE Corporation specializing in data visualization, the development of sentiment elicitation and analysis tools and mobile apps. He worked closely with the University of Vermont Complex Systems Center’s Computational Story Lab to design and develop the sentiment analysis tool Hedonometer.org; he co-invented and created the SpiderView sentiment elicitation system, and teaches data visualization development with D3 and Ruby at the MITRE Institute.

    Contact these instructors (please mention course name in the subject line)

Scheduling:

REGISTRATION: There is no obligation or payment required to enter the Registration for an actively scheduled course. We understand that you may need approvals but please register as early as possible or contact us so we know of your interest in this course offering.

SCHEDULING: If this course is not on the current schedule of open enrollment courses and you are interested in attending this or another course as an open enrollment, please contact us at (410)956-8805 or ati@aticourses.com. Please indicate the course name, number of students who wish to participate. and a preferred time frame. ATI typically schedules open enrollment courses with a 3-5 month lead-time. To express your interest in an open enrollment course not on our current schedule, please email us at ati@aticourses.com.

For on-site pricing, you can use the request an on-site quote form, call us at (410)956-8805, or email us at ati@aticourses.com.


Related courses