What we have here is a failure to communicate ( Systems Engineering )

Although the term “Systems Engineering” dates back to the 1940s, and the concept was practiced even earlier than that, there seems to be a growing emphasis on System Engineering, perhaps because Systems have become more complex in recent times.  During my early years of training and practice as an electrical engineer decades ago, I do […]

Although the term “Systems Engineering” dates back to the 1940s, and the concept was practiced even earlier than that, there seems to be a growing emphasis on System Engineering, perhaps because Systems have become more complex in recent times.  During my early years of training and practice as an electrical engineer decades ago, I do not recall hearing or learning much about Systems Engineering, but it seems to have gotten much more well-deserved attention since then.  Feel free to argue these points if you wish, but this has been my observation.

So, what can go wrong if Systems Engineering principles are ignored?  What could possibly go wrong if you have multiple engineers concentrating on their own aspect of the overall design, and no one paying attention to the overall system?    Take a look at this humorous video and see what can happen…

But seriously, though…..

One of the best descriptions of Systems Engineering that I have seen is from INCOSE ( International Council on Systems Engineering ).  It says “Systems engineers are at the heart of creating successful new systems. They are responsible for the system concept, architecture, and design. They analyze and manage complexity and risk. They decide how to measure whether the deployed system actually works as intended. They are responsible for a myriad of other facets of system creation. Systems engineering is the discipline that makes their success possible – their tools, techniques, methods, knowledge, standards, principles, and concepts. The launch of successful systems can invariably be traced to innovative and effective systems engineering.”

So, how can today’s busy and overworked engineer learn more about Systems Engineering?  Or, even if you think you already know everything about Systems Engineering, how can you refresh your knowledge so it is more relevant to the workplace of 2019? 

Applied Technology Institute may have exactly what you are looking for.  ATI recently merged with Honourcode, Inc., and now offers a full line of Systems Engineering courses being taught by original Honourcode instructors, including Eric Honour.

 There is still time to register for our next offering of Applied Systems Engineering, being offered in Columbia, Md starting on September 23, 2019.  This course includes a  hands-on class exercise conducted in small groups. Part A analyzes a system concept and requirements, developing specific test requirements,. Part B creates an effective test program and test procedures for the product system. Part C builds the robotic systems per assembly instructions. Part D implements the test program to evaluate the final robots.  It is a really fun and informative in-class exercise.   Here is a cool video of the System Product built in this class.

Please read more about this opportunity at the following link.

Bill Gates Reveals The 10 Breakthrough Technologies That Will Change The World in 2019

Here’s the full 2019 selection, as picked by Gates – a comprehensive exploration of each idea will be published in the March/ April edition of MIT Technology Review, released on March 5. 1. Robot dexterity—robot hands that can learn to manipulate unfamiliar objects on their own. 2. Predicting preemies—a simple blood test to warn of […]

Here’s the full 2019 selection, as picked by Gates – a comprehensive exploration of each idea will be published in the March/ April edition of MIT Technology Review, released on March 5.

1. Robot dexterity—robot hands that can learn to manipulate unfamiliar objects on their own.
2. Predicting preemies—a simple blood test to warn of a preterm birth, potentially saving many children’s lives.
3. Gut probe in a pill—a swallowable device that can image the digestive tract and even perform biopsies.
4. Custom cancer vaccines—a treatment that uses the body’s own immune system to target only tumor cells.
5. The cow-free burger—both plant-based and lab-grown meat alternatives that could drastically cut emissions from the food industry.
6. Carbon dioxide catcher—techniques for absorbing CO2 from the air and locking it away that may finally become economic.
7. An ECG on your wrist—the ability for people with heart conditions to continuously monitor their health and get early warnings of problems.
8. Sanitation without sewers—a self-contained toilet that could tackle disease and unpleasant living conditions in much of the developing world.
9. Smooth-talking AI assistants—new advances in natural language processing that make digital assistants capable of greater autonomy.
10. New-wave nuclear power—both fission and fusion reactor designs that could help bring down carbon emissions.

To learn about Technology advances and Artifical Intelligence and Deep Learning go to
https://www.aticourses.com/catalog_of_all_ATI_courses.htm#engineering

To give credit to the sources, I first learned about this list of advances through an email newsletter published via Bernard Marr.

https://www.forbes.com/sites/bernardmarr/2019/02/27/bill-gates-reveals-the-10-breakthrough-technologies-that-will-change-the-world-in-2019/#34fcc6a6171d

Happy Groundhog Day!

We are halfway between the winter solstice and the spring equinox, also known as, Groundhog day!  If you want to know more about the origins of this tradition, you can find that at the link below, but the story involves bears and badgers, and Germans and Christians, and superstition and science.  You can’t make this […]

We are halfway between the winter solstice and the spring equinox, also known as, Groundhog day!  If you want to know more about the origins of this tradition, you can find that at the link below, but the story involves bears and badgers, and Germans and Christians, and superstition and science.  You can’t make this stuff up, and you can’t tell the story any better than The Old Farmers Almanac.  Check it out at….

https://www.almanac.com/content/groundhog-day-history-meaning-folklore?

It will be a stretch to relate Groundhog day to courses offered by ATI, but we will give it a try.   That pesky groundhog needs to draw on his Remote Sensing abilities in order to have such a wonderful batting average.  If you want to learn more about Remote Sensing, consider one of the Remote Sensing Courses offered by ATi, like perhaps…  Optical & Remote Sensing or Microwave Remote Sensing or Geomatics – GIS, GPS and Remote Sensing or Directions in Space Remote Sensing.

Lastly, and SPOILER ALERT….Spring will be coming early this year.  I can’t wait.

Groundhog Day 2019:The Prediction and Photos

Update on Story -Rover Was Delivered to Mars by an ATLAS Rocket Update

The Applied Technology Institute published (01/23/2019) a story on the Curiosity Rover Was Delivered to Mars in 2015. Space News posted a related article on (01/24/2019).https://www.space.com/43104-mars-rover-opportunity-landing-15th-anniversary.html? This was the original ATI posthttp://www.aticourses.com/blog/index.php/2019/01/23/recall-that-curi…s-rocket-in-2011/ ‎

The Applied Technology Institute published (01/23/2019) a story on the Curiosity Rover Was Delivered to Mars in 2015. Space News posted a related article on (01/24/2019).
https://www.space.com/43104-mars-rover-opportunity-landing-15th-anniversary.html?

This was the original ATI post
http://www.aticourses.com/blog/index.php/2019/01/23/recall-that-curi…s-rocket-in-2011/ ‎

Funny Military Dog Photos

I enjoyed these funny Military Dog Photos. These have nothing to do with ATI’s technical training classes, but I have always enjoyed dogs. None of these military dogs will attend ATI’s courses. The Postal Service saw my Funny Military Dog Photos.It will recognize the Military Dogs with stamps this year. There will be one stamp […]

I enjoyed these funny Military Dog Photos. These have nothing to do with ATI’s technical training classes, but I have always enjoyed dogs. None of these military dogs will attend ATI’s courses.

The Postal Service saw my Funny Military Dog Photos.
It will recognize the Military Dogs with stamps this year.

There will be one stamp each for the German shepherd, Labrador retriever, Belgian Malinois and Dutch shepherd breeds, which are all types of military working dogs.

https://www.military.com/undertheradar/2019/01/24/8-funny-working-dog-memes-thatll-make-you-wag-your-tail.html?

New Horizons’ Best-Yet Detailed View of Ultima Thule

The best-yet image of Ultima Thule taken by the wide-angle Multicolor Visible Imaging Camera (MVIC) is now online. The image shows a large circular depression, and many smaller depressions. These were not visible in the earlier, lower resolution image. Ultima Thule measures approximately 30 kilometers (18 miles) in diameter, and is irregularly shaped. Even better […]

The best-yet image of Ultima Thule taken by the wide-angle Multicolor Visible Imaging Camera (MVIC) is now online. The image shows a large circular depression, and many smaller depressions. These were not visible in the earlier, lower resolution image. Ultima Thule measures approximately 30 kilometers (18 miles) in diameter, and is irregularly shaped. Even better future images are expected.

The principal investigator, Alan Stern, as well as eight other systems designers, teach Spacecraft Design courses for the Applied Technology Institute (ATI or ATIcourses). If you are working in Space and Spacecraft it is good to take classes and learn from real-world experts who have designed and operated successful spacecraft. Why not learn from the best? Click on this blog post to see the New Horizons designers and the specific classes that they teach.

https://www.aticourses.com/blog/index.php/2018/12/19/new-horizons-spacecraft-approaches-ultima-thule/

Applied Technology Institute has been following the New Horizons Mission to Pluto for years (since launch in 2006). Now New Horizons continued to the Kuiper Belt object (KBO) nicknamed MU69 Ultima Thule. New Horizons fly past and imaged the Ultima Thule on January 1, 2019. High-resolution images are only now being transmitted back and released to the public.

The best source for these images is http://pluto.jhuapl.edu/News-Center/News-Article.php
This link provides an ongoing source of featured images.

http://pluto.jhuapl.edu/Galleries/Featured-Images/index.php

New Horizons is approximately 4.13 billion miles (6.64 billion kilometers) from Earth, operating normally and speeding away from the Sun (and Ultima Thule) at more than 31,500 miles (50,700 kilometers) per hour. At that distance, a radio signal reaches Earth six hours and nine minutes after leaving the spacecraft.

New Images Show the Record-Breaking Wildfire Season, California Shows Nine New Scars

Space remote sensing can provide the big picture of the Record-Breaking Fires in California. We had family members living in Paradise, California. Their home and their veterinary business were totally destroyed. They have to effectively restart their lives. Those burn scars include the traces of the Camp Fire that destroyed the town of Paradise in […]

Space remote sensing can provide the big picture of the Record-Breaking Fires in California. We had family members living in Paradise, California. Their home and their veterinary business were totally destroyed. They have to effectively restart their lives.

Those burn scars include the traces of the Camp Fire that destroyed the town of Paradise in mid-November. That fire became the deadliest fire in California’s history after it killed at least 85 people.

See
https://www.space.com/42554-california-wildfires-2018-burn-scars-from-space.htm

If you want to learn more about Space and Space-Based Remote Sensing visit our catalog-of-all courses
https://www.aticourses.com/catalog_of_all_ATI_courses.htm#space

Layered Missile Defense Article and Comments

Missile Defense is a complex problem for the US and US allies such as Israel and Poland. The US Department of Defense has a layered approach of different systems to detect threat missile launches and then to intercept and destroy the incoming missiles. Defense systems include1. Phalanx Close-In Weapons System (CIWS)2. Terminal High Altitude Area Defense […]

Missile Defense is a complex problem for the US and US allies such as Israel and Poland. The US Department of Defense has a layered approach of different systems to detect threat missile launches and then to intercept and destroy the incoming missiles.

 Defense systems include

1. Phalanx Close-In Weapons System (CIWS)

2. Terminal High Altitude Area Defense (THAAD)

3. Aegis Ballistic Missile Defense System

4. Israel’s Iron Dome

5. SkyCeptor This is a good summary article sponsored by Raytheon.

https://breakingdefense.com/2018/10/the-present-and-future-of-layered-missile-defense/?

Equally as interesting are the detailed comments from the Breaking Defense readers that appear at the end of the article. The comments focus on costs and the relative costs of the missiles used by the attackers (say for example North Korea or Iran) and the missile defense system missiles. ATI is interested in your comments about the article and open source articles about Missile Defense Systems cost and performance. ATI has many relevant technical training courses that help to understand the technology and components of Missile Defense Systems. These courses can be presented on-site at your facility or at publically scheduled open enrollment courses. Please email your requests to ati@aticourses.com

https://www.aticourses.com/catalog_of_all_ATI_courses.htm#radar These courses help understand the Missile Defense technologies

1. Aegis Ballistic Missile Defense- https://www.aticourses.com/Aegis_Ballistic_Missile_Defense.html

2. Aegis Combat System Engineering- https://www.aticourses.com/Aegis_Combat_System_Engineering.html

3. AESA Radar and Its Applications https://www.aticourses.com/Modern_AESA_Radara_Principles.html

4. C4ISR Requirements, Principles& Systems https://www.aticourses.com/c4isr_requirement_principles.htm

5. Electronic Warfare Against the New Threat https://www.aticourses.com/Electroni_Warfare_Agains_New_Threat_Environment.html

These courses directly focus on missiles and missile defense.

1. Making Decisions in Missile Defense- https://www.aticourses.com/making_decisions_in_missile_defense.htm

2. Missile Analysis- https://www.aticourses.com/missile_systems_analysis.htm

3. Missile Guidance https://www.aticourses.com/Modern_Missile_Guidance.html

4. Missile System Design https://www.aticourses.com/tactical_missile_design.htm

5. Modeling, Simulation of Aerospace Vehicles https://www.aticourses.com/Modeling_Simulation_Analysis_of_Aerospace_Vehicles.html

6. Modeling & Simulation of Missiles in 6 DoF https://www.aticourses.com/Modeling&SimulationMissilesin6DoF.html

7. Tactical Strategic Missile Guidance Please email your requests for more information to ati@aticourses.com

It Will Be Historic: New Horizons Team Prepares for January 1, 2019 Flyby of Kuiper Belt Ultima Thule

Applied Technology Institute (ATI or ATIcourses) has been following the New Horizons Mission to Pluto for years (since launch in 2006). Now New Horizons is on to the Kuiper Belt object (KBO) nicknamed Ultima Thule. New Horizons will fly past and image the Ultima Thule on January 1, 2019. Several of ATI instructors have been […]

Applied Technology Institute (ATI or ATIcourses) has been following the New Horizons Mission to Pluto for years (since launch in 2006). Now New Horizons is on to the Kuiper Belt object (KBO) nicknamed Ultima Thule. New Horizons will fly past and image the Ultima Thule on January 1, 2019.

Several of ATI instructors have been lead scientists for the New Horizons mission. If you are working in Space and Spacecraft it is good to take classes and learn from real-world experts who have designed and operated successful spacecraft.

This is a good article to keep you up to date.
https://www.space.com/42252-new-horizons-team-ultima-thule-flyby.html?

If you have interest ATI can send you updates in on our blog and our newsletter.
https://secure.campaigner.com/CSB/Public/Form.aspx

Background

New Horizons is a space probe launched by NASA on 19 January 2006, to the dwarf planet Pluto and on an escape trajectory from the Sun. It is the first man-made spacecraft to go to Pluto. Its flight took eight years. It arrived at the Pluto–Charon system on July 14, 2015. It flew near Pluto and took photographs and measurements while it passed. At about 1 kilobit per second, it took 15 months to transmit them back to Earth.

ATI instructors who helped plan, develop and engineer the New Horizons Mission. These include the following engineers and scientists, with their bios and links to their related ATI courses.

1. Dr. Alan Stern http://aticourses.com/planetary_science.htm

Dr. Alan Stern is a planetary scientist, space program executive, aerospace consultant, and author. In 2010, he was elected to be the President and CEO of The Golden Spike Company, a commercial space corporation planning human lunar expeditions. Additionally, since 2009, he has been an Associate Vice President at the Southwest Research Institute, and since 2008 has had his own aerospace consulting practice.
Dr. Stern is the Principal Investigator (PI) of NASA’s $720M New Horizon’s Pluto-Kuiper Belt mission, the largest PI-led space mission ever launched by NASA. New Horizons launched in 2006 and arrived on July 14, 2015. Dr. Stern is also the PI of two instruments aboard New Horizons, the Alice UV spectrometer and the Ralph Visible Imager/IR Spectrometer.

2. Eric Hoffman
http://www.aticourses.com/effective_design_reviews.htm
http://www.aticourses.com/spacecraft_quality.htm

Eric Hoffman has designed space-borne communications and navigation equipment and performed systems engineering on many APL satellites and communications systems. He has authored over 60 papers and holds 8 patents in these fields. Mr. Hoffman was involved in the proposal (as well as several prior Pluto mission concepts). He chaired the major system-level design reviews (and now teaches the course Effective Design Reviews). He was Space Department Chief Engineer during the concept, design, fabrication, and test of New Horizons. His still actively consulting in the field. He is an Associate Fellow of the AIAA and coauthor of the leading textbook Fundamentals of Space Systems

3. Chris DeBoy http://www.aticourses.com/Satellite_Communications_Design_Engineering.htm

Chris DeBoy leads the RF Engineering Group in the Space Department at the Johns Hopkins University Applied Physics Laboratory, and is a member of APL’s Principal Professional Staff. He has over 20 years of experience in satellite communications, from systems engineering (he is the lead RF communications engineer for the New Horizons Mission to Pluto) to flight hardware design for both Low-Earth orbit and deep-space missions. He holds a BSEE from Virginia Tech, a Master’s degree in Electrical Engineering from Johns Hopkins, and teaches the satellite communications course for the Johns Hopkins University.

4. Dr. Mark E. Pittelkau http://www.aticourses.com/attitude_determination.htm

Dr. Pittelkau was previously with the Applied Physics Laboratory, Orbital Sciences Corporation, CTA Space Systems (now Orbital), and Swales Aerospace. His experience in satellite systems covers all phases of design and operation, including conceptual design, implementation, and testing of attitude control systems, attitude and orbit determination, and attitude sensor alignment and calibration, control-structure interaction analysis, stability and jitter analysis, and post-launch support. His current interests are precision attitude determination, attitude sensor calibration, orbit determination, and optimization of attitude maneuvers. Dr. Pittelkau earned the B.S. and Ph. D. degrees in Electrical Engineering from Tennessee Technological University and the M.S. degree in EE from Virginia Polytechnic Institute and State University.

5. Douglas Mehoke (and others) http://www.aticourses.com/spacecraft_thermal_control.htm

Douglas Mehoke is the Assistant Group Supervisor and Technology Manager for the Mechanical System Group in the Space Department at The Johns Hopkins University Applied Physics Laboratory. He has worked in the field of spacecraft and instrument thermal design for 30 years, and has a wide background in the fields of heat transfer and fluid mechanics. He has been the lead thermal engineer on a variety spacecraft and scientific instruments, including MSX, CONTOUR, and New Horizons. He is presently the Technical Lead for the development of the Solar Probe Plus Thermal Protection System. He was the original thermal engineer for New Horizons, the mechanical system engineer, and is currently the spacecraft damage lead for the flyby Hazard Team. Other JHU/APL are currently teaching the Spacecraft Thermal Control course.

6. Steven Gemeny http://www.aticourses.com/ground_systems_design.htm

Steve Gemeny is a Principal Program Engineer and a former Senior Member of the Professional Staff at The Johns Hopkins University Applied Physics Laboratory, where he served as Ground Station Lead for the TIMED mission to explore Earth’s atmosphere and Lead Ground System Engineer on the New Horizons mission to explore Pluto by 2020. Mr. Gemeny is an experienced professional in the field of Ground Station and Ground System design in both the commercial world and on NASA Science missions with a wealth of practical knowledge spanning nearly three decades. Mr. Gemeny delivers his experiences and knowledge to his ATIcourses’ students with an informative and entertaining presentation style. Mr Gemeny is Director Business Development at Syntonics LLC, working in RF over fiber product enhancement, new application development for RF over fiber technology, oversight of advanced DOD SBIR/STTR research and development activities related to wireless sensors and software defined antennas.

7. John Penn http://www.aticourses.com/fundamentals_of_RF_engineering.html

John Penn is currently the Team Lead for RFIC Design at Army Research Labs. Previously, he was a full-time engineer at the Applied Physics Laboratory for 26 years where he contributed to the New Horizons Mission. He joined the Army Research Laboratory in 2008. Since 1989, he has been a part-time professor at Johns Hopkins University where he teaches RF & Microwaves I & II, MMIC Design, and RFIC Design. He received a B.E.E. from the Georgia Institute of Technology in 1980, an M.S. (EE) from Johns Hopkins University (JHU) in 1982, and a second M.S. (CS) from JHU in 1988.

8. Timothy Cole
http://www.aticourses.com/space_based_lasers.htm
http://www.aticourses.com/Tactical_Intelligence_Surveillance_Reconnaissance_System_Engineering.htm
http://www.aticourses.com/Wireless_Sensor_Networking.htm

Timothy Cole is a leading authority with 30 years of experience exclusively working in electro-optical systems as a system and design engineer. While at Applied Physics Laboratory for 21 years, Tim was awarded the NASA Achievement Award in connection with the design, development, and operation of the Near-Earth Asteroid Rendezvous (NEAR) Laser Radar and was also the initial technical lead for the New Horizons LOng-Range Reconnaissance Imager (LORRI instrument). He has presented technical papers addressing space-based laser altimetry all over the US and Europe. His industry experience has been focused on the systems engineering and analysis associated development of optical detectors, wireless ad hoc remote sensing, exoatmospheric sensor design and now leads ICESat-2 ATLAS altimeter calibration effort.

9. Jay Jenkins http://www.aticourses.com/spacecraft_solar_arrays.htm

Jay Jenkins is a Systems Engineer in the Human Exploration and Operations Mission Directorate at NASA and an Associate Fellow of the AIAA. His 24-year aerospace career provided many years of experience in design, analysis, and test of aerospace power systems, solar arrays, and batteries. His career has afforded him opportunities for hands-on fabrication and testing, concurrent with his design responsibilities. He was recognized as a winner of the ASME International George Westinghouse Silver Medal for his development of the first solar arrays beyond Mars’ orbit and the first solar arrays to orbit the planet, Mercury. He was recognized with two Best Paper Awards in the area of Aerospace Power Systems.
See some of ATI’s earlier blog posts
https://www.aticourses.com/blog/index.php/tag/douglas-mehoke/
https://www.aticourses.com/blog/index.php/tag/mission-operations-center-at-apl/

What was it exactly? Space history’s most fascinating misquote.

This is an interesting article. What was it exactly? History’s most fascinating misquote. “Houston, we have a problem’: The amazing history of the iconic Apollo 13 misquote. https://www.washingtonpost.com/podcasts/retropod/historys-most-fascinating-misquote/ To me, the differences are small, especially since the problem was not resolved at the time of the radio message,and could have lead to the death of […]

This is an interesting article. What was it exactly? History’s most fascinating misquote.

“Houston, we have a problem’: The amazing history of the iconic Apollo 13 misquote.

https://www.washingtonpost.com/podcasts/retropod/historys-most-fascinating-misquote/

To me, the differences are small, especially since the problem was not resolved at the time of the radio message,
and could have lead to the death of the 3 astronauts.

“Houston, we have a problem’

and “Houston, we had a problem’ (That was apparently what was actually said).

If you want to know more about Space and Satellite Design, go to
https://www.aticourses.com/catalog_of_all_ATI_courses.htm#space

If you want more history od Apollo 13, see
https://www.hq.nasa.gov/office/pao/History/apollo/apo13hist.html