Tag Archives: launch

You decide – The Best Technical Training for You!

 

 

You can make a difference. Applied Technology Institute is scheduling new courses for September 2016 through July 2017. Please let us know which courses you would like to see on our schedule or brought to your facility.

·         If you have a group of 3 or more people, ATI can schedule an open enrollment course in your geographic area.

·         If you have a group of 8 or more, ATI can schedule a course on-site at your facility.

On-site training brings our experts to you — on your schedule, at your location. It also allows us to plan your training in advance and tailor classes directly to your needs.

You can help identify courses to suit your training needs and bring the best short courses to you! ATI courses can help you stay up-to-date with today’s rapidly changing technology.

Boost your career. Courses are led by world-class design experts. Learn from the proven best.

ATI courses by technical area:

Satellites & Space-Related courses

Acoustic & Sonar Engineering courses

Engineering & Data Analysis courses

Radar, Missiles and Combat Systems courses

Project Management and Systems Engineering courses

______________________________________________________________________________________________

Contact us: ATI@ATIcourses.com or (410) 956-8805


Sign Up For ATI Courses eNewsletter

Defiant North Korea launches a space rocket

Applied Technology Institute (ATI Courses) offers a variety of courses on Radar, Missiles and Combat Systems.  We believe the news below would be of interest to our readers.

North Korea has declared the successful firing of a long-range rocket and flouted international condemnation of the launch by promising “many more”.

In defiance of international warnings, North Korea fired the rocket on Sunday morning in what it said was a mission under the direct orders of lead Kim Jong-un to put an Earth observation satellite, the Kwangmyongsong-4, into orbit.

But the United Nations deplored Pyongyang’s move, widely seen as part of its program to develop intercontinental ballistic nuclear missiles (ICBMs).

North Korea beamed a special announcement live on state-run television claiming the launch as a success, and trumpeted the beauty of the “fascinating vapor of Juche satellite trailing in the clear and blue sky”.

It came just weeks after Pyongyang’s widely-disputed claim that it had successfully tested a hydrogen bomb, and is the latest evidence of North Korean leader Kim Jong-un’s willingness to ignore international pressure as tensions on the Korean Peninsula heighten.

Washington has persistently called on Beijing, a key trade partner on which Pyongyang relies heavily, to do more to rein in its neighbor. But China has resisted calls to leverage its economic relationship with North Korea, fearing it would back an already volatile Kim Jong-un further into a corner.

“China expresses regret that North Korea, in spite of the pervasive opposition of the international community, insisted on using ballistic missile technology to carry out a launch,” the Chinese foreign ministry said in a statement on Sunday.

North Korea sees its rocket and nuclear tests as crucial steps toward its ultimate goal of achieving a nuclear-armed long-range missile arsenal – necessary, it says, to defend itself against what it describes as decades of US hostility, and part of Kim Jong-un’s “byungjin” policy of developing North Korea’s nuclear program and economy simultaneously.

Pyongyang had initially told UN agencies it planned to launch its rocket sometime between February 8 and 25, before bringing the window forward to between February 7 and 14 on Saturday. It launched two hours into the revised window.

This is the sixth long-range missile test by the North in its program to develop nuclear-loaded ICBMs. It is thought to have a small arsenal of atomic bombs as well as an array of medium-range missiles but has yet to demonstrate the capability to produce nuclear warheads small enough to attach on a missile.


Sign Up For ATI Courses eNewsletter

APPLIED TECHNOLOGY INSTITUTE INSTRUCTOR, TOM LOGSDON, HELPS INTERNATIONAL SURVEYORS MASTER THEIR CRAFT

Instructor Tom Logsdon, turquoise shirt at front center, poses with some of his students at the United Nations Humanitarian Center located on the heel of the boot in Brindisi, Italy. Over a period of five days, the students learned how to use the GPS-based radio navigation system to survey their countries with extreme precision. The students and their instructors were flown into Brindisi by the United Nations from various other countries around the globe.

In June 2014 while on assignment for the Applied Technology Institute in Riva, Maryland,

Logsdon and his professional colleague, Dr. Moha El-Ayachi, a professor at Rabat, Morocco,

taught a group of international students who were flown into the United Nations Humanitarian

Services Center in Brindisi, Italy. The students came in from such far-flung locales as Haiti,

Liberia, Georgia, Western Sahara, the South Sudan, Germany, and Senegal to learn how to

better survey land parcels in their various countries. Studies have shown that if clear,

unequivocal boundaries defining property ownership can be assured to the citizens of a Third-

World Country, financial prosperity inevitably follows. By mastering modern space-age

surveying techniques using Trimble Navigation’s highly precise equipment modules, the

international students were able to achieve quarter-inch (1 centimeter) accuracy levels for

precise benchmarks situated all over the globe.

This was Logsdon’s second year of teaching the course in Brindisi and the Applied Technology

Institute has already been invited to submit bids for another, similar course with the same two

instructors for the spring of 2015. The students who converged on Brindisi were all fluent in

English and well-versed in American culture. Their special skills were especially helpful to their

instructors, Tom and Moha, who trained them to use the precisely timed navigation signals

streaming down from the 31 GPS satellites circling the Earth 12,500 miles high.

The DOD’s Request for Proposal for the GPS navigation system was released in 1973.

Rockwell International won that contract to build 12 satellites with the total contract value of

$330 million. Over the next dozen years, the company was awarded a total of $3 billion in

contracts to build more than 40 GPS navigation satellites. Today 1 billion GPS navigation

receivers are serving satisfied users all around the globe. The course taught by Tom and Moha

covered a variety of topics of interest to specialized GPS users: What is the GPS? How does it

work? What is the best way to build or select a GPS receiver? How is the GPS serving its user

base? And how can specialize users find clever new ways accentuate its performance?

The GPS constellation currently consists of 31 satellites. That specialized constellation provides

at least six-fold coverage to users everywhere in the world. Each of the GPS satellites transmits

precisely timed electromagnetic pulses down to the ground, that require about one 11th of a

second to make that quick journey. The electronic circuits inside the GPS receiver measure the

signal travel time and multiply it by the speed of light to obtain the line-of-sight range to that

particular satellite. When it has made at least four ranging measurements to a comparable

number of satellites, the receiver employees a four-dimensional analogy of the Pythagorean

theorem to determine its exact position and the exact time. This solution utilizes four equations

in four unknowns: the receiver’s three position coordinates and the current time. The GPS

system must keep track of time intervals to an astonishing level of precision. A radio wave

moving through a vacuum travels a foot in a billionth of a second. So an accurate and effective

GPS system must be able to keep track of time to within a few billionths of a second. This is

accomplished by designing and building satellite clocks that are so accurate and reliable they

would lose or gain only one second every 300,000 years. These amazingly accurate clocks are

based on esoteric, but well-understood principles, from quantum mechanics. Despite their

amazing accuracy, the clocks on board the GPS satellites must be re-synchronized using

hardware modules situated on the ground three times each and every day.

The timing measurements for the GPS system are so accurate and precise Einstein’s two

famous Theories of Relativity come into play. The GPS receivers located on or near the ground

are in a one-g environment and they are essentially stationary compared the satellites whizzing

overhead. A GPS satellite travels around its orbit at a speed of 8600 miles per hour and the

gravity at its 12,500-mile altitude above the earth is only six percent as strong as the gravity

being experienced by a GPS receiver situated on or near the ground. The difference in speed

creates a systematic distortion in time due to Einstein’s Special Theory of Relativity. And the

difference in gravitational attraction creates a systematic (and predictable) time distortion due to

Einstein’s General Theory Of Relativity. If the designers of the GPS navigation system did not

understand and compensate for these relativistic time-dilation effects, the GPS radionavigation

system would, on average, be in error by about 7 miles. Fortunately, today’s scientists and

engineers have gradually developed a firm grasp of the mathematics associated with relativity

so they are able to make extremely accurate compensations to all of the GPS navigation

solutions. The positions provided by the GPS, for rapidly moving users such as race cars and

military airplanes, are typically accurate to within 15 or 20 feet. For the stationary benchmarks of

interest to professional surveyors, the positioning solutions can be accurate to within one

quarter of an inch, or about one centimeter.

Tom Logsdon has been teaching short courses for the Applied Technology Institute

(www.ATIcourses.com) for more than 20 years. During that interval, he has taught nearly 300

short courses, most of which have spanned 3 to 5 days. His specialties include “Orbital and

Launch Mechanics”, “GPS Technology”, “Team-Based Problem Solving”, and “Strapped-

Down Inertial Navigation Systems”.

Logsdon has written and sold 1.8 million words including 33 nonfiction books. These have

included The Robot Revolution (Simon and Schuster), Striking It Rich in Space (Random

House), The Navstar Global Positioning System (Van Nostrand Reinhold), Mobile

Communications Satellites (McGraw-Hill), and Orbital Mechanics (John Wiley & Sons). All of

his books have sold well, but his best-selling work has been Programming in Basic, a college

textbook that, over nine printings, has sold 130,000 copies. Logsdon also, on occasion, writes

magazine articles and newspaper stories and, over the years, he has written 18,000 words for

Encyclopaedia Britannica. In addition, he has applied for a patent, help design an exhibit for

the Smithsonian Institution, and helped write the text and design the illustrations for four full-

color ads that appeared in the Reader’s Digest.

In 1973 Tom Logsdon received his first assignment on the GPS when he was asked to figure

out how many GPS satellites would be required to provide at least fourfold coverage at all times

to any receiver located anywhere on planet Earth. What a wonderful assignment for a budding

young mathematician! Working in Technicolor— with colored pencils and colored marking pens

on oversize quad-pad sheets four times as big as a standard sheet of paper— Logsdon used

his hard-won knowledge of three-dimensional geometry, graphical techniques, and integral

calculus to puzzle out the salient characteristics of the smallest constellation that would provide

the necessary fourfold coverage. He accomplish this in three days— without using any

computers! And the constellation he devised was the one that appeared in the winning

proposal that brought in $330 million in revenues for Rockwell International.

Even as a young boy growing up wild and free in the Bluegrass Region of Kentucky, Tom

Logsdon always seemed to have an intuitive understanding of and subtle mathematical

relationships of the type that proved to be so useful in the early days of the American space

program. His family had always been “gravel-driveway poor.” At age 18 he had never eaten in a

restaurant; he had never stayed in a hotel; he had never visited a museum. But, somehow, he

managed to work his way through Eastern Kentucky University as a math-physics major while

serving as the office assistant to Dr. Smith Park, head of the mathematics department. He also

worked as the editor of the campus newspaper, at a noisy Del Monte Cannery in Markesan,

Wisconsin, and as a student trainee at the Naval Ordnance Laboratory in Silver Spring,

Maryland.

Later he earned a Master’s Degree in Mathematics from the University of Kentucky where he

wrote a regular column for the campus newspaper, played ping-pong with the number 9

competitor in the America, and specialized in a highly abstract branch of mathematics called

combinatorial topology. In his 92-page thesis, jam-packed with highly abstract mathematical

symbols, he evaluated the connectivity and orientation properties of simplicial and cell

complexes and various multidimensional analogies of Veblin’s Theorem.

Soon after he finished his thesis, Logsdon accepted a position as a trajectory and orbital

mechanics expert at Douglas Aircraft in Santa Monica, California. His most famous projects

there included the giant 135 foot-in-diameter Echo Balloon, the six Transit Navigation Satellites,

the Thor-Delta booster, and the third stage of the Saturn V moon rocket. A few years later, he

moved on to Rockwell International in Downey, California, where he worked his mathematical

magic on the second stage of the Saturn V, the four manned Skylab missions, the 24-satellite

constellation of GPS radionavigation satellites, the manned Mars mission of 2016, various

unmanned asteroid and comet probes, and the solar-power satellite project which, if it had

reached fruition, would have incorporated at least 100 geosynchronous satellites each with a

surface area equal to that of Manhattan Island (about 20 square miles).

Among his proudest accomplishments at Rockwell International was the clever utilization of nine

different branches of advanced mathematics, in partnership with his friend, Bob Africano, to

increase the performance capabilities of the Saturn V moon rocket by 4700 extra pounds of

payload bound for the moon — each pound of which was worth five times its weight in 24 karat

gold! These important performance gains were accomplished without changing any of the

hardware elements on the rocket. Logsdon and Africano, instead, employed their highly

specialized knowledge of mathematics and physics to work out ways to operate the mighty

Saturn V more efficiently. This involved shaping the trajectories of the rocket for maximum

propulsive efficiency, shifting the burning mixture ratio in mid flight in an optimal manner, and

analyzing their six-degree-of-freedom post-flight trajectory simulations to minimize the heavy

reserve propellants necessary to assure completion of the mission. These powerful

breakthroughs in math and physics led to a saving of $3.5 billion for NASA – an amount equal to

the lifetime earnings of 2000 average American workers!

Currently, Logsdon and his wife, Cyndy, live in Seal Beach, California. Logsdon is now retired

from Rockwell International, but he is still writing books, acting as an expert witness in a variety

of aerospace-related legal cases, lecturing professionally at big conventions, and teaching

short courses on rocket science, orbital mechanics, and GPS technology at major universities,

NASA bases, military installations, and at a variety of international locations. Prior to his recent

trips to Italy, Logsdon delivered two lectures at Hong Kong University in southern China and

taught two short courses at Stellenbach University near Cape Town, South Africa. Over the past

30 years or so he has taught and lectured at 31 different countries scattered across six

continents. At the International Platform Association meetings in Washington, DC, two of his

presentations in successive years placed in the top 10 among the 45 professional platform

lecturers making presentations there. Colleges and Universities that have sponsored his

presentations have included Johns Hopkins, Berkeley, USC, Oxford, North Texas University,

the International Space University in Strasbourg, France, Saddleback.


Sign Up For ATI Courses eNewsletter

Soyuz Spacecraft Heads For International Space Station

A Soyuz spacecraft carrying a Russian, an American and a Dutchman to the International Space Station blasted off flawlessly from Russia’s launch facility in Kazakhstan on Wednesday.

Mission commander Oleg Kononenko and his colleagues, American Don Pettit and European Space Agency astronaut Andre Kuipers are to dock with the space station on Friday.

The blastoff from the snowy launchpad in Baikonur, Kazakhstan, took place without a hitch and the spacecraft reached Earth orbit about nine minutes later. Video from inside the craft showed the three crew members gripping each others’ hands in celebration as the final stage of the booster rocket separated.

The three aboard the Russian spacecraft will join three others already on the ISS, NASA’s Dan Burbank and Russians Anton Shkaplerov and Anatoly Ivanishin. The six are to work together on the station until March.

The launch came amid a period of trouble for Russia’s space program, which provides the only way for crew to reach the space station since the United States retired its space shuttle program in July.

The launch of an unmanned supply ship for the space station failed in August and the ship crashed in a Siberian forest. The Soyuz rocket carrying that craft was the same type used to send up Russian manned spacecraft, and the crash prompted officials to postpone the next manned launch while the rockets were examined for flaws. The delayed mission eventually took place on Nov. 14.

Just five days before that launch, Russia sent up its ambitious Phobos-Ground unmanned probe, which was to go to the Phobos moon of Mars, take soil samples and return them to Earth. But engineers lost contact with the ship and were unable to propel it out of Earth orbit and toward Mars. The craft is now expected to fall to Earth in mid-January.

Last December, Russia lost three navigation satellites when a rocket carrying them failed to reach orbit. A military satellite was lost in February, and the launch of the Express-AM4, described by officials as Russia’s most powerful telecommunications satellite, went awry in August.


Sign Up For ATI Courses eNewsletter

International Space Station Crew Set To Launch To A New Home For The Holidays

Just in time for the holidays, the residents of the International Space Station will welcome three new crew members:

Flight Engineer Don Pettit (NASA)

Soyuz Commander Oleg Kononenko (Rosscosmos)

Flight Engineer Andre Kuipers (European Space Agency)

They are set to launch in their Soyuz TMA-03M spacecraft from the Baikonur Cosmodrome in Kazakhstan at 7:16 a.m. CST on Wednesday, Dec. 21 (7:16 p.m. local time).

NASA Television will air video of prelaunch activities at 5:45 a.m. and provide live coverage of the launch beginning at 6:30 a.m

On Dec. 23, the trio will dock to the Rassvet module of the station at 9:22 a.m. The new crew will join station Commander Dan Burbank of NASA and Russian Flight Engineers Anton Shkaplerov and Anatoly Ivanishin, who have been aboard the orbital laboratory since mid-November. NASA TV will provide live coverage beginning at 8:45 a.m. Hatch opening and the holiday welcoming ceremony will occur about three hours later.

 

<p><hr size=”1″ noshade=”noshade” />

<div style=”text-align: center;”><a href=”http://app.streamsend.com/public/fIbq/cr5/subscribe”><img src=”http://www.aticourses.com/images/Sign-Up-For-ATI-Courses-eNewsletter.gif” border=”0″ alt=”Sign Up For ATI Courses eNewsletter” width=”450″ height=”30″ /></a></div>

<hr size=”1″ noshade=”noshade” />


Sign Up For ATI Courses eNewsletter

SCHEMES FOR ENHANCING THE SATURN V MOON ROCKET TRANSLUNAR PAYLOAD CAPABILITY



Today virtually every large liquid rocket that flies into space takes advantage of the performance-enhancement techniques we pioneered in conjunction with the Apollo moon flights. NASA’s reusable space shuttle, for example, employs modern versions of optimal fuel biasing and postflight trajectory reconstruction. However, more of the critical steps are accomplished automatically by the computer.

Russia’s huge tripropellant rocket, which was designed to burn kerosene-oxygen early in its flight, the switch to hydrogen-oxygen for the last part, yields important performance gains for precisely the same reason the Programmed Mixture Ratio scheme did. In short, the fundamental ideas we pioneered are still providing a rich legacy for today’s mathematicians and rocket scientists most of whom have no idea how it all crystallized more that 40 years ago.

Illustration 1. below summarizes the performance gains and a sampling of the mathematical procedures we used in figuring out how to send 4700 extra pounds of payload to the moon on each of the manned Apollo missions. We achieved these performance gains by using a number of advanced mathematical techniques, nine of which are listed on the chart. No costly hardware changes were necessary. We did it all with pure mathematics!

In those days each pound of payload was estimated to be worth five times its weight in 24-karat gold. As the calculations in the box in the lower right-hand corner of Illustration 1. indicate, the total saving per mission amounted to $280 million, measured in 2009 dollars. And, since we flew nine manned missions from the earth to the moon, the total savings amounted to $2.5 billion in today’s purchasing power!

We achieved these savings by using advanced calculus, partial differential equations, numerical analysis, Newtonian mechanics, probability and statistics, the calculus of variations, non linear least squares hunting procedures, and matrix algebra. These were the same branches of mathematics that had confused us, separately and together, only a few years earlier at Eastern Kentucky University, the University of Kentucky, UCLA, and USC.

 

Illustration 1. Over a period of two years or so a small team of rocket scientists and mathematics used at least nine branches of advanced mathematics to increase the performance capabilities of the Saturn V moon rocket by more than 4700 pounds of translunar payload. As the calculations in the lower right-hand corner of this figure indicate, the net overall savings associated with the nine manned missions we flew to the moon totaled $2,500,000,000 in today’s purchasing power. These impressive performance gains were achieved with pure mathematical manipulations. No hardware modifications at all were required.

Read the full article here