Category Archives: Defense, Including Radar, Missiles and EW

This blog posts news about the Defense industry, including links to industry news and articles, and announcements of continuing education for professionals who are working in the radar, missiles and EW profession.

Acoustics and Sonar Classic Books

Classic Acoustics and Sonar books for from Peninsula Publishing Los Altos Hills, California USA

Many of these texts were written by current or retired ATIcourse instructors and several of the textbooks are given out free as part of the ATI sponsored short course on the subject.

June 2009
Principles of Underwater Sound, Third edition. Robert J. Urick. The most widely used book on underwater acoustics and sonar published today. This book continues to be the standby of practicing engineers, scientists, underwater systems managers and students. Its contents lie squarely in the middle between theory at one end and practical technology at the other. Principles summarizes fundamentals, effects and phenomena of underwater sound and their application to sonar. It provides numerical, quantitative data for the solution of practical problems. 229 figures; 23 tables; 673 references. Detailed index pinpoints data and explanations instantly. Problem section with solutions.
Hardcover. 444 pages. ISBN: 9780932146625

Mechanics of Underwater Noise. Donald Ross. Most authoritative book on fundamentals of underwater noise radiated by ships, submarines, torpedoes. Stresses physical explanations of mechanisms by which noise is generated, transmitted by structures and radiated into the sea.
Hardcover. 375 pages. ISBN: 9780932146168

Sediment Acoustics. Robert D. Stoll. Seminal book addressing Biot Theory for the modeling of acoustic behavior of ocean sediments. Written for seismic-acousticians in the geo-exploration, engineering, oceanographic and underwater sound communities. Stoll, a respected leader in marine geoacoustics for more than forty years, added a brief preface and updated selected bibliography to this second printing of his book, first published in 1989. Sediment Acoustics provides an excellent introduction to Biot Theory, the physics underlying the model parameters, and experimentally measurable predictions of the theory. The book constitutes a major synthesis for non-specialists: the results of laboratory, in-situ and numerical modeling studies of seismic-acoustic wave propagation, reflection and attenuation in two-phase poro-visco-elastic media. Includes tutorial sections and references for new researchers in seismic modeling, quantitative seismic stratigraphy, offshore marine geotechnique, underwater acoustics and sonar, and ground-interacting aeroacoustics.
Softcover. 172 pages. ISBN: 9780932146144

Underwater Electroacoustic Transducers. Dennis Stansfield. This reprint is a practical handbook for users and designers of underwater transducers. It has been an authoritative text in the field since first published by the Bath University Press in 1991. Design methods are illustrated by concentrating on the design of piezoelectric transducers in the 2 – 20 kHz range, most commonly used in sonar systems. Designs for frequencies below this range are also discussed. Treatment is down-to-earth and avoids complex mathematics. Topics include the role of the transducer as an element of the complete system; wide bandwidth, high power transmitter applications; wide band hydrophones; characteristics of piezoelectric and magnetostrictive materials; and transducer testing. For the user, the wide range of topics and practical approach of the book help him to identify the most important features of the requirement and assist him in drawing up realistic specifications. For the designer, the book describes the necessary theoretical and practical aspects involved in developing a transducer to most effectively suit the application and it discusses the main features of the various types of designs.
Softcover. 429 pages. ISBN: 9780932146724

Introduction to the Theory and Design of Sonar Transducers. Oscar Bryan Wilson. Written in 1985 as a text at the Naval Postgraduate School, this book provides a complete treatment of the fundamentals of transducer theory and design using equivalent circuit techniques. Subjects addressed: introductory baseline and definitions, equivalent circuits, properties of materials: piezoelectric and magnetorestrictive, hydrophone design and transducer arrays.
Hardcover. 202 pages. ISBN: 9780932146229

Underwater Electroacoustic Measurements. Robert J. Bobber. Theory and practice of measuring electroacoustic parameters such as response, sensitivity, directivity, impedance, efficiency, linearity and noise limits of transducers used in sonars.
Hardcover. 341 pages. ISBN: 9780932146199

Matched Field Processing for Underwater Acoustics. Alexandra Tolstoy. Published by the World Scientific Publishing Company in 1993. The author was with the Naval Research Laboratory. Matched Field Processing is the process of cross-correlation of a measured field with a modeled, predicted or replica field to determine a set of input parameters that yield the highest correlation. Typically, input parameters in to a selected sound propagation model would include candidate range, bearing and depth of a source relative to the receiving array. The sound propagation model might be defined by environmental data such as sound speed profiles, bottom and surface conditions, tides, and composition of the water. The matched field processing (MFP) would be employed to determine the location of the source – the exact relative range, bearing and depth of the source. This book is for scientists and engineers who are familiarizing themselves with MFP and those in need of detailed information about the process. The first two chapters address a brief history of MFP and discuss other types of processors used in underwater acoustics. The third chapter discusses where errors in MFP solutions occur due to errors in the propagation model. Chapter 4 gives the reader a familiarity of how linear and minimum variance processors perform under a wide range of conditions. And the last chapter addresses broadband processing, source movement, and multiple sources.
Hardcover. 228 pages. ISBN: 9789810210595

Space-Time Information Processing. Charles Loda and A. Winder. Classic reference for signal processing and data analysis for acoustic and sonar engineering. Features Fourier transforms, statistical analyses, spectra and correlation. Valuable chapters address spatially and temporally limited functions, optimal filtering procedures, and interpretation of results.
Hardcover. 192 pages. ISBN: 9780932146045

Transducers and Arrays for Underwater Sound. Charles H. Sherman and John Butler. This book is published by Springer, released in 2007, and sold by Peninsula Publishing. This is the most recent and complete book on the theory and design of underwater transducers in print today. Sponsored by the Office of Naval Research of the U. S. Navy. This book addresses the theory, development and design of electroacoustic transducers for underwater applications. It is more comprehensive than any existing book in this field. It includes the basics of the six major types of electroacoustic transducers and shows why piezoelectric ceramic transducers are the most suitable for underwater sound. It presents the basic acoustic concepts and models needed in transducer and transducer array development, and discusses most currently used transducer designs. It analyzes nonlinear effects and describes methods of transducer evaluation and measurement. The extensive Appendix and numerous diagrams provide an up to date source for use by students and practicing engineers and scientists.
Hardcover. 630 pages. ISBN: 9780387329406

Underwater Acoustic System Analysis, Second Edition. William S. Burdic. Provides a comprehensive exploration of underwater acoustics, acoustic signal generation, and acoustic signal processing for systems analysts, systems engineers and sonar engineers. This book is a reprint of the second edition published in 1991 and is still a classic text in the field. Updated and expanded in 1991, this edition contains all the valuable information it its earlier text plus a detailed discussion of adaptive processing as applied to spatial filtering. You will also find review sections on Fourier analysis, correlation, random processes and hypothesis testing. Highlights include: generation and propagation of compressional acoustic waves in the ocean; narrow band signatures of surface ships caused by cavitating propeller blades and diesel engine firing; optimization of signal-to-noise ratio and spatial resolution in the presence of multiple signals; ambient noise in the ocean; and examples of system performance.
Softcover. 489 pages. ISBN: 9780932146632

Sonar Engineering Handbook. Harrison T. Loeser. Fundamentals and
engineering formulas dealing with sonar, signal processing, sound transmission, noise generation, vibration control and elastomers. Each formula is briefly explained in an associated paragraph with references provided for detailed follow up.
Softcover. 216 pages. ISBN: 9780932146595

Ambient Noise in the Sea. Robert J. Urick. Examines significant aspects of ambient noise beneath sea’s surface: definition; measurement; sources; variation. Essential for work in sonar systems.
Hardcover. 205 pages. ISBN: 9780932146137

Sound Propagation in the Sea. Robert J. Urick. Overviews underwater sound propagation, multipath, deep sound channel, sea surface reflections scattering, attenuation, absorption, modeling.
Hardcover. 225 pages. ISBN: 9780932146083

Physics of Sound in the Sea. Milestone work on undersea sound propagation resulting from the World War II studies. Discusses transmission loss, target strength and echoes from subs/surface ships, sound transmission through wakes, etc.
Hardcover. 577 pages. ISBN: 9780932146244

Side Scan Sonar Record Interpretation. Charles Mazel. Training manual produced by Klein Associates, Inc., manufacturer of side scan sonars. Applies to interpretation of all commercial side scan sonars. The 144 figures and photographs of actual sonar records depict mine and ship targets, shadows, clutter, noise, wakes and dolphins.
Softcover. 146 pages. ISBN: 9780932146502

Noise Reduction. Edited by Leo L. Beranek. Classic book of fundamentals of noise control and noise reduction for the general engineer. Elementary beginnings leading to the advanced aspects of noise reduction for offices, residences, auditoriums and transportation vehicles. Case histories and abundant references.
Hardcover. 776 pages. ISBN: 9780932146588

Collected Papers on Acoustics. Wallace Clement Sabine, the Father of Architectural Acoustics. Acoustic problems in theater, auditorium, church, classrooms and their solutions. Magnificent sketches and photos. This unabridged volume forms the foundation of modern architectural acoustics.
Hardcover. 304 pages. ISBN: 9780932146601

Signal Detection and Recognition by Human Observers. Edited by John A. Swets in 1964, this book was the first to bring together into one volume a broad discussion coverage of modern signal detection theory applications to human performance, specifically in auditory and visual sensory tasks. Applications address problems in psychology including the integration of sensory information, signal uncertainty, auditory frequency analysis, speech communication, vigilance and recognition memory. Bibliography updated to 1988.
Hardcover. 734 pages. ISBN: 9780932146212

Signal Detection Theory and Psychophysics. David Green and John Swets. Summarizes the application of signal detection theory to the analysis and measurement of the human observer’s sensory system. Outlines the theory of statistical decision making and its application to a variety of common psychophysical activities. Applies signal detection theory to problems in a sensory psychology.
Hardcover. 521 pages. ISBN: 9780932146236

Applied Acoustics. G. Porges. Develops the basic theory of sound from first principles and applies the theory to obtain practical formula for the transmission and absorption of sound, sound levels in closed spaces and the radiation of sound from common noise sources. In keeping with the practical orientation of the book, the mathematics used is relatively elementary.
Hardcover. 190 pages. ISBN: 9780932146182

The Sabines at Riverbank. John Kopec. Chronicles the people and research involved in the birth and first decades of the science of architectural acoustics. Here is the history of the first family of architectural acoustics, the Sabines, and the Riverbank Acoustical Laboratories, the world’s first independent laboratory for measuring the acoustical properties of architectural materials. The story begins in the early 1900s with Wallace Clement Sabine, a Harvard professor, who led the practice of acoustics toward a quantitative science with great insight, industry and integrity. He was followed by two other giants in the field of architectural acoustics: Paul Earls Sabine, a cousin, and his son, Hale Johnson Sabine, all Harvard graduates. No one other than John Kopec with his historical perspective and inside knowledge of the lab could have authored this extraordinary history.
Hardcover. 230 pages. ISBN: 9780932146618

Book Ordering Information

You can order books by mail, telephone (650)948-2511,
fax (650) 948-5004 or E-mail:

When you order books provide the following information:

* Title of Book
* Quantity
* Unit Price
* If a California resident, add 9.25% sales tax
* Postage and Handling: Surface mail within the USA will cost $6.00 for the first book and $2.00 for each additional book. Priority Airmail within the USA will cost $7.00 per book. For overseas book purchases, we ship the books by Priority Airmail which costs $15.00 per book.
* Total Cost
* Credit Card Information:
• Visa, MasterCard
• Credit Card Number
• Expiration Date
• Printed Name
• Signature, if by Fax or Mail
* Mailing Information:
• Name
• Organization and Mail Stop, if applicable
• Address, City, State, Zip Code, Country

You can pay by check, postal order or credit card. Make remittance payable to:
Peninsula Publishing
26666 Birch Hill Way
Los Altos Hills, CA 94022 USA

Web Site:

Peninsula Publishing
26666 Birch Hill Way
Los Altos Hills, CA 94022 USA
Telephone: 650-948-2511
Fax: 650-948-5004

Vandenberg AFB Uses Unmanned Aircraft Systems (UAS) to Provide Base and Launch Security

Vandenberg continues to pave the way as the West Coast’s premiere space and missile establishment

Vandenberg AFB is home to the 14th Air Force, 30th Space Wing, 381st Training Group, and the Western Launch and Test Range (WLTR).  A peninsula location on the Pacific Coast makes it ideal to easily launch satellites into polar orbit.  This, along with its location relative to the jet stream, makes Vandenberg a good site to launch reconnaissance satellites.

Everyday thousands of Team Vandenberg members come together and work as a single force to further space power on California’s central coast.  Only one unauthorized person in a critical area during a launch window can shut the operation down.  Much of the base is rugged, mountainous, and undeveloped, so it can be difficult to patrol and monitor all areas of the base in the hours prior to a launch.

Vandenberg is paving the way for other bases security requirements.  It has established an innovative program using a small Unmanned Aircraft Systems (UAS), called the Raven for base security.  The RQ-11 Raven weighs 4.5 pounds, has a five-foot wingspan and stretches only 38 inches in length.  It is equipped with a video camera which streams live feed to an operator on the ground.  The Raven is launched by hand, has about an hour of flight time on a single battery charge.  The system includes spare batteries and a charger that plugs into a Humvee.

Recently, the Raven found three unofficial persons on Point Sal beach just prior to a launch, which could have caused a delay or stop the launch.  Day and night, live video capabilities let the Raven greatly assist with the overall situation awareness picture helping ensure mission success.  Based on this success, Vandenberg is interested in more unmanned aircraft than just the Raven.

Vandenberg has requested that in early July, Mr. Mark N. Lewellen, one of Applied Technology Institute (ATI) instructors, teach ATI’s Unmanned Aircraft Systems and Applications course at Vandenberg AFB.  This one-day course is designed for engineers, aviation experts and project managers who wish to enhance their understanding of UAS.

The course provides the “big picture” for those who work outside of the discipline.  Each topic addresses real systems (RQ-11 Raven, the RQ-7 Shadow, the MQ-1 Predator, and the RQ-4 Global Hawk) and real-world problems and issues concerning the use and expansion of their applications.

Topics covered include:

History of UAS
Categories of current UAS and their aeronautical capabilities
Major manufactures of UAS
The latest developments and major components of a UAS
What type of sensor data can UAS provide?
Regulatory and spectrum issues associated with UAS
National Airspace System including the different classes of airspace
How will UAS gain access to the National Airspace System (NAS)?

New 1-day short course on Unmanned Aircraft Systems

ATIcourses has a new 1 day short course on Unmanned Aircraft Systems. A full description  is at

What You Will Learn:

  • Categories of current UAS and their aeronautical capabilities?
  • Major manufactures of UAS?
  • The latest developments and major components of a UAS?
  • What type of sensor data can UAS provide?
  • Regulatory and spectrum issues associated with UAS?
  • National Airspace System including the different classes of airspace
  • How will UAS gain access to the National Airspace System (NAS)?

From this course you will gain practical knowledge to understand the different classes and types of UAS, optimize their specific applications, evaluate and compare UAS capabilities, interact meaningfully with colleagues, and master the terminology.

Facts and Figures on UAS

UAS on Wikipedia

UAV Forum

DoD UAS Roadmap 2007-2032

Shepard UVOnline

Radar and Radar Signal Processing Systems Are Making Flying The Friendly Skies Safer From Bird Strikes

Radar and advanced radar signal processing technology can help make flying safer by avoiding bird strikes.

In the wake of the emergency crash landing of US Airways Flight 1549 in New York’s Hudson River on January 2009, the National Transportation Safety Board is conducting a hearing on implementing currently available avian radar technology to airports throughout the United States. The avian radar industry urges the Federal Aviation Administration (FAA) to make the friendly skies a safer place by immediately deploying commercially-available avian radar systems to our nation’s airports. Bird strikes pose a serious threat to aviation safety. According to the FAA “there were more than 7,400 bird strikes in the United States in 2007, including 110 that caused substantial damage to aircraft.”

According to Dr. Tim J. Nohara, President of Accipiter Radar “avian radar can help mitigate bird hazards where they are most likely to occur around the airport. Real-time monitoring and alerting of approaching flocks of birds helps wildlife control personnel better manage bird hazards.”

In 2006, the FAA began evaluating the avian radar program Accipiter Avian Radar to assess if the use of commercial avian radar at airports would be justified, and would not compromise safety and would be compatible with existing wildlife control operations. The FAA contends that due to the unusual circumstance of the birdstrike current avian radar systems could not have prevented the crash of flight 1549. Flight 1549 was an unusual in that it was a high altitude strike (2800 feet) and did not occur in the immediate vicinity of the airport.

Developers within the avian radar industry, however, assert that current avian radar technology could have prevented the crash. Gary W. Andrews, CEO of DeTect (a industry leading developer of avian radar systems) stated that although some avian radar systems do not have long-range detection capabilities systems, others such as MERLIN Aircraft Birdstrike Avoidance Radar can reliably detect and track bird flocks at a range of up to 8 miles.

Andrew’s contends that MERLIN Radar system has been successfully used throughout the globe for “birdstrike risk detection, tracking and alerting at commercial airports, military airfields, and space launch facilities, with real-time bird activity displays used by airfield managers, bird control staff and air traffic controllers”
Courses in radar and radar signal processing are now becoming available to the public. The Applied Technology Institute of Riva, MD., will offer a three-day course in July 13-15 in Laurel,MD. ATI’s Radar Signal Analysis and Processing using MATLAB course explores algorithms for signal detection, false alarms, tracking techniques and systems performance equations.

Radar Signal Analysis and Processing using MATLAB course is being held July 13-15, 2009 in Laurel, Maryland, in the Washington DC area.

Tracking Soviet Submarines During the Cold War

This is an interesting article about a Navy Captain who served in submarines and was involved in tracking one of the first Soviet submarines patrolling off the Atlantic coast of the US. The incident used passive sonar to track a Zulu submarine in May 28, 1959 and was able to direct a patrol plane to photograph the submarine as it surfaced to recharge its batteries. This was an intelligence bonanza for the US.

Acoustic Analysis Software

ATI’s Advanced Topics In Underwater Acoustics course

The course provides an in-depth treatment of the latest results in a selection of core topics of underwater acoustics.Topics include software for analysis of acoustic signals and software to predict underwater propagation. Its aim is to make available to practitioners results in a tutorial form suitable for people who are already informed about the basics of underwater acoustics.

Avisoft is a company that makes a software package designed for bird and other animal researchers. They have a “lite” version available as a download.
Raven is a very capable acquisition and analysis software package from the Cornell group. Free Lite version. It now supports multi-channel recording
Sound Ruler is a free analysis and graphics package designed for animal sound analysis.
Adobe Audition Commericial Sound Analysis software. Expensive.
Sound Emission Analyzer (SEA), from the bioacoustics group at Pavia, Italy. Mainly developed for bioacoustic studies, this software can be used for a wide range of applications requiring real-time display of sounds and vibrations. It allows to view in real-time the spectrographic features of sounds acquired by any sound device compatible with Windows
BatSound software system: Real-time Imaging/Recording. Has evaluation version as download. Listed by Pettersson Elektronik AB: the Swedish Bat Detector company.
Syrinx A Windows program for spectral analysis, editing, and playback of acoustic signals.
Spectrogram 16 Spectrogram version 16 is a freeware dual channel audio spectrum analyzer for Windows which can provide either a scrolling time-frequency display or a spectrum analyzer scope display in real time for any sound source connected to your sound card.
Sonobat: software provides a comprehensive tool for analyzing and comparing high-resolution full-spectrum Sonograms of Bat echolocation calls recorded from full-spectrum and time-expansion bat detectors.
Ishmael Sound acquisition program with automatic call (signal) recognition, file annotation, acoustic localization
XBAT is a sophisticated architecture for sound analysis that allows you to write your own analysis tools in additon to the ones provided in the distribution.

Workers For The U.S. Satellite Industry

I thought that this was interesting:

by Marion Blakey, President and CEO
Aerospace Industries Association

Photo 1
The U.S. satellite industry has a great deal to worry about these days ­— lost opportunities due to outdated export control rules, global competition from more and more countries every day, the various technical challenges of providing new services — but there’s another issue out there affecting the entire aerospace industry that demands attention in the satellite sector — a looming workforce crisis.

The U.S. aerospace industry workforce is currently dominated by aging workers — baby boomers who were enthralled with space travel and answered our nation’s call to win the Space Race and put Americans on the moon. Today, nearly 60 percent of aerospace workers were age 45 or older in 2007, with retirement eligibility either imminent or already reached.

There is a growing need to replace these experienced workers, especially the engineer talent pool, with capable new talent to ensure that the United States continues to be the world’s leader in satellite technology and other important aerospace applications. But there are not sufficient numbers of young people studying Science, Technology, Engineering and Mathematics — the STEM disciplines — that would put them on the path to enter aerospace careers and replace our retiring workers.

There is very strong competition for our nation’s brightest math- and science-oriented students. Aerospace companies are forced to share talent with a variety of high-tech industries that were not even around when baby boomers were selecting their careers. For example, more than half of those who graduate with bachelor’s degrees in engineering go into totally unrelated fields for employment. And the numbers earning advanced degrees in STEM subject areas lag other fields by huge margins.

More at

UAV Helped With Pirate Incident

  • ScanEagle’s Pirate Patrol Proves Potency Of UAV
    From The Enterprise (White Salmon, Washington), written by Jesse Burkhardt, comes the story of how local company Insitu’s “ScanEagle” drone aircraft contributed to the successful military operation on April 12th that freed American ship captain Richard Phillips who was being held hostage by Somali pirates and then enduring the ensuring four-day standoff. Full Story
  • The Bainbridge employed the  ScanEagle UAV technology to provide around the clock observation of the lifeboat.

Seeking Sea Based Strategic Deterrence and Future SSBNs

I found this interesting for my underwater acoustics readers.

U.S. Seeks Successor to Trident Submarine
By Gerry J. Gilmore
American Forces Press Service

NAVAL SUBMARINE BASE KING’S BAY, Ga., Feb. 20, 2009 – The U.S. Navy has started the process to find a 21st-century successor to the Trident strategic missile submarine, senior Defense Department officials said here yesterday.
“We’re just at the opening phases right now, going through the proper systems engineering that will advance that particular design approach,” Secretary of the Navy Donald C. Winter told reporters at a news conference.

Tridents are nuclear-powered, Ohio-class submarines. At 560 feet long and 42 feet wide, Tridents are the largest submarines in the U.S. Navy’s inventory. The first Trident ballistic-missile submarine, the USS Ohio, was commissioned in 1981.

“A wide variety of options” are being considered for the Trident’s replacement, Winter said. However, the Navy secretary expressed his belief that the Trident system would be replaced by another undersea-going platform.

“I do fully expect that it is going to be a submarine,” Winter said of the Trident’s successor.

Prior to the news conference the Navy’s top leaders and the vice chairman of the Joint Chiefs of Staff were among senior officials who attended a ceremony that paid tribute to the crew of the USS Wyoming Trident strategic missile submarine.

The USS Wyoming finished its 38th patrol Feb. 11, marking the 1000th completed patrol of a Trident submarine since the Ohio embarked on its initial patrol in October 1982. The Wyoming was commissioned in July 1996 and began its first patrol in August 1997.

Marine Corps Gen. James E. Cartwright, the vice chairman of the Joint Chiefs of Staff, echoed Winter’s belief that the Trident’s replacement “will be a submarine.”

Chief of Naval Operations Navy Adm. Gary Roughead told reporters of the resilience and independence exhibited by submariners’ families.

“I think the families of our submariners are really like submariners, a special breed,” Roughead said. “And, my hat’s off to them, and they have my utmost respect and support.”

The U.S. military is about to embark on its Quadrennial Defense Review and a Nuclear Posture Review, Cartwright said, to determine what types of defense capabilities will be required to maintain U.S. national security in the coming years. The QDR is performed every four years.

The threats America faces during the 21st century are much more diverse and involve “a much broader spectrum of conflict against a much broader number of enemies, to include those that are not nation-states,” Cartwright told reporters.

Gauging and evaluating future threats and determining what kinds of military capabilities and systems will be needed to deter them will be debated during the QDR and the nuclear posture review, Cartwright said.

U.S. defense planners are now seeking “to tailor our deterrence for the types of actors that were not present during the Cold War but are going to be present in the future,” Cartwright said.

And, “it will be the sailors that will make the difference in deterrence, not necessarily just the platforms,” Cartwright said of the Navy’s future nuclear-deterrent mission.

The 14 nuclear-missile carrying Trident submarines based here and at other Navy ports provide more than half of America’s strategic deterrent capability, King’s Bay officials said.

“The application of deterrence can be actually more complicated in the 21st century, but some fundamentals don’t change,” Air Force Gen. Kevin P. Chilton, commander of U.S. Strategic Command, said. “And, the underlying strength of our deterrence force remains the nuclear deterrent force that we have today.”

The Trident submarine strategic missile force “is absolutely essential” to America’s nuclear-deterrent capability, Chilton said.

“And, it’s not just to deter nuclear conflict,” he said of the Tridents’ mission. “These forces have served to deter conflict in general, writ large, since they’ve been fielded.”

The U.S. government agreed to reduce the number of its strategic-missile submarines as part of the 1992 Strategic Arms Reduction Treaty. Consequently, four of the Navy’s 18 Trident submarines were modified to exchange their nuclear missiles for Tomahawk-guided cruise missiles. These vessels carry the designator SSGN. In 2006, the USS Ohio was converted into a guided-missile submarine.

At the news conference, Roughead said the Navy is “really pleased” with the converted Trident submarines, which also carry a contingent of special operations troops, as well as the Tomahawks.

“That [type of] submarine has performed extremely well,” Roughead said of the cruise-missile carrying Tridents.

The facility here was established in 1980, replacing a closed U.S. ballistic submarine facility that had been based in Rota, Spain. In 1989, USS Tennessee was the first Trident submarine to arrive at the facility. Another Trident training facility is based in Bangor, Wash.

On-Site Training at Your Facility

The Applied Technology Institute offers on-site technical training at your facility. ATI’s abilityt to provide customized course presentations to a highly technical market has placed ATI as one of the leading technical seminar providers. Request a free on-site proposal with no obligation by contacting us at