New Threats Cause Electronic Warfare to Evolve

radarThe weapons and technologies of war are constantly evolving – changing more rapidly year to year in the 21st Century.

Bob Schena, CEO of Rajant Corp. in Malvern, PA, notes, “Spectrum dominance is the new high ground; all weapons systems today are highly reliant on communications of one sort or another, whether global positioning system (GPS) or internal communications. If someone can distort GPS or disable onboard systems, you’re toast. On a scale of 1 to 10, it’s a 12. We are so reliant on communications in our style of fighting that it is absolutely critical and will get even more critical. If you’re at a communications disadvantage, I don’t see how you can last very long.”

As the lines tend to blur between EW, cyber warfare, and signals intelligence (SIGINT) tending to blur, EW itself is changing as well.

U.S. Army, says Maj. Rich-ard Michel, Cyber & EW Operations Troop Commander within the Army’s Asymmetric Warfare Group (AWG) at Fort Meade, MD, notes, “As a result of our better understanding of multi-domain battle and our use of EW, cyber, and space ops as they continue to evolve, we will continue to experience a more advanced and capable Army than has ever been seen in history. AWG’s job is to look at the decision-making process, how that will change doctrine and organizations. New technologies give commanders better options on how to employ that capability. That is an inevitability and an absolute positive for the Army, with greater capabilities and technologies empowering us to accomplish our goals.”

Experts note that they will witness even greater speed and evolutionary technologies in the next decade and beyond that few can even partially predict. One that is on everyone’s list, however, is artificial intelligence (AI), which is likely to play a major role in the future of EW as advances in technology are occurring at a record pace.

Marc Couture, senior product manager for digital signal processing at the Curtiss-Wright Corp. Defense Solutions Division in Ashburn, VA, notes, “In EW, you need to convert everything to ones and zeros with analog-to-digital converters. In terms of capturing the EM spectrum in an RF microwave sense, we have some products that capture data at 25 gigasamples per second, which is a huge amount and fairly unique,” Couture says; 1 gigasample is one billion samples. “What’s been very instrumental with the A/D converters is the speed of gigasamples per second is getting faster and faster and with greater resolution. With an EW system, then, you can keep an eye on more of the spectrum at the same time, Ten years ago, technology would not have been able to pick out all the signals deep in the noise. But this also means the data becomes a bigger fire hose, so you will need multiple high-power processing to sort it all out.”

While evolving technologies advance at a record pace, artificial intelligence is likely to play a major role in EW. Couture also notes that, “In the past in EW, you had a classified list of target signatures, but now there are more and more new threats and to counter some of them – especially if you are in theater in combat and seeing something for the first time – you have cognitive systems, a neural net AI, sometimes called deep learning or machine learning, to do this on the fly,” Couture says. “It’s in the toddler phase now, but these cognitive techniques will begin deploying in the next decade. This will require a lot more processing power than a decade ago. It used to be megaflops, now gigaflops, and becoming teraflops.”

For more on this topic:

The Applied Technology Institute (ATI) offers a wide variety of up-to-date and in-depth courses in Radars, Missiles, and Defense.

Leave a Reply

Your email address will not be published. Required fields are marked *