top header
top gradation HOME top vertical line top vertical line top vertical line top vertical line top vertical line top vertical line top vertical line menu gray
black line 2
menu gray tab More About ATI
menu blue ATI — Who We Are
white line
menu blue Contact ATI Courses
white line
menu blue List Of ATI Courses
white line
menu blue Attendees Testimonials
white line
menu blue The ATI FAQ Sheet
white line
menu blue Suggestions/Wait List
white line
menu blue New Courses
white line
menu blue Become an ATI Instructor
menu gray tab site resources
menu blue Acoustics & Sonar
white line
menu blue Rockets & Space
white line
menu blue GPS Technology
white line
menu blue ATI Blog
white line
menu blue ATI Space News
white line
menu blue ATI Site Map
white line
menu blue ATI Staff Tutorials
white line
menu blue ATI Sampler Page
white line
menu gray tab bar
menu gray tab courses
white line
menu blue Current Schedule
white line
menu blue Onsite Courses
white line
menu blue Register Online
white line
menu blue Request Brochure
white line
menu blue Free On-Site Price Quote
white line
menu blue Download Catalog
white line
menu blue Distance Learning
black line  

ATI's Fundamentals of Airborne Radar course

Share |


Technical Training Short On Site Course Quote

    • Why is airborne radar so distinctly different from surface-based radar?
    • Why is Doppler processing so important, so vital, to airborne radar?
    • Why are "medium prf waveforms" used so much, when they are so obviously ambiguous in the usual radar measurements?
    • How does radar imaging work from airborne and space-borne radars?

    Questions like these are quite common among radar persons, even those with some considerable experience in other areas of radar. What's more, those quite new to radar entirely could well proceed with their work and miss the intrigue and challenges unique to this application, and fail to appreciate the excitement of accomplishments in this area.

    In this valuable course, these questions are answered, albeit rather qualitatively, in the very first session, and then developed more carefully in the lectures to follow. By the conclusion of the course, the student will fully understand the fundamentals of all radar, the practical impact of putting such equipment into aircraft and spacecraft in the first place, and then both the demands (for clutter rejection, for example) and the opportunities (for imaging, say) inherent in simply flying over the earth!



    Jerry LeMieux, PhD is a pilot and engineer with over 40 years and 10,000 hours of aviation experience. He has over 30 years of experience in operations, program management, systems engineering, R&D and test and evaluation for AEW, fighter and tactical data link acquisition programs. He led 1,300 personnel and managed 100 network and data link acquisition programs with a five year portfolio valued at more than $22 billion. He served at the numbered Air Force Level, responsible for the development, acquisition and sustainment of over 300 information superiority, combat ops and combat support programs that assure integrated battlespace dominance for the Air Force, DoD, US agencies and Allied forces. In civilian life he has consulted on numerous airspace issues for the US Federal Aviation Administration, Air Force, Army, Navy, NASA and DARPA . He holds a PhD in electrical engineering and is a graduate of Air War College and Defense Acquisition University.

    Contact this instructor (please mention course name in the subject line)

    Robert T. Hill (LF-IEEE) was born in Iowa, received BS in EE as well as MS in EE. An Air Force ground electronics officer (radar), he then worked as an engineer tor the Navy Department in radar system development until his retirement. Having begun teaching in 1975, he now teaches for several sponsors world wide. He has written the radar articles for the McGraw-Hill technical encyclopedia. Active in the IEEE, he was many years a member of its Radar Systems Panel and the Board of Governors of its AES Society. He remains active in radar conference planning of the IEEE and those societies around the world cooperating in such conferences.

    Contact these instructors (please mention course name in the subject line)

Who Should Attend:

    The course is taught as though students might be quite new to radar; it IS a fundamental course. Of course, some radio or radar experience is helpful but engineers and technicians even in fields other than radar should have no difficulty with this instruction. Elementary algebra and some trigonometry are helpful, as is some understanding of statistics and statistical inference. The instructor is quite experienced in teaching these principles to persons of very little experience. Managers, even ones not technical specialists, charged with oversight of work related to airborne radar development would profit greatly by this exposure.

Course Outline:

  1. Introduction to radar generally and the challenges and opportunities of airborne radar specifically; the major types of airborne radar (AEW, AI, others); electromagnetic waves and how we represent them; radar composition, block diagrams; quantifying radar performance and the statistical nature of detection.
  2. Scattering and propagation; the nature of clutter, statistical models, dependencies; introduction to signal processing, coherent and noncoherent processes; pulse compression; Doppler processing basics.
  3. Airborne radar signal processing; quantifying the Doppler effects, understanding the pulse-repetition-frequency (prf) choices; handling ambiguities in both range and Doppler dimensions; the Woodward ambiguity function.
  4. Class exercise - an example airborne radar and our design of an appropriate waveform for it.
  5. Advances in airborne radar: the achievement of high resolution in several dimensions; how imaging works, SAR; ISAR; image problems (e.g., ground moving targets); image enhancement; polarimetry briefly; dimensions associated with space-borne radar, a notional SBR.
  6. Advances in waveforms, in high resolution detection processes; phased arrays and active apertures; some example developments underway.


    This course is not on the current schedule of open enrollment courses. If you are interested in attending this or another course as open enrollment, please contact us at (410) 956-8805 or at and indicate the course name and number of students who wish to participate. ATI typically schedules open enrollment courses with a lead time of 3-5 months. Group courses can be presented at your facility at any time. For on-site pricing, request an on-site quote. You may also call us at (410) 956-8805 or email us at