top header
top gradation HOME top vertical line top vertical line top vertical line top vertical line top vertical line top vertical line top vertical line menu gray
black line 2
menu gray tab More About ATI
menu blue ATI — Who We Are
white line
menu blue Contact ATI Courses
white line
menu blue List Of ATI Courses
white line
menu blue Attendees Testimonials
white line
menu blue The ATI FAQ Sheet
white line
menu blue Suggestions/Wait List
white line
menu blue New Courses for 2009
white line
menu blue Become an ATI Instructor
menu gray tab site resources
menu blue Acoustics & Sonar
white line
menu blue Rockets & Space
white line
menu blue GPS Technology
white line
menu blue ATI Blog
white line
menu blue ATI Space News
white line
menu blue ATI Site Map
white line
menu blue ATI Staff Tutorials
white line
menu blue ATI Sampler Page
white line
menu gray tab bar
menu gray tab courses
white line
menu blue Current Schedule
white line
menu blue Onsite Courses
white line
menu blue Register Online
white line
menu blue Request Brochure
white line
menu blue Free On-Site Price Quote
white line
menu blue Download Catalog
white line
menu blue Distance Learning
black line  

ATI's Fiber Optics Technology and Applications course:
An intro for technical people to enter the field or use FO in their work

Share |


Technical Training Short On Site Course Quote

This three-day course is de­signed for technical people with a wide variety of backgrounds who wish to enhance their understand­ing of Fiber-Optics or become famil­iar with the applications of FO. The various properties of Fibers of a wide variety of types will be discussed along with applications for which they can be used. Special emphasis will be put on using fibers for Laser Power Delivery, a subject not found in textbooks..


    Dr. James Pierre Hauck is a consultant to industry and government defense labs. He is an expert in fiber-optics systems having used them for a variety of systems in which CW or Pulsed laser power is delivered to targets.
    Dr. Hauck's work with lasers and optics began about 40 years ago when he studied Quantum Electronics at the University of CA Irvine. After completing the Ph.D. in Physics, he went to work for Rockwell's Electronics Research Center, working Lasers and Applications, and later on Fiber-Optics, and Optical Comms Systems.
    Jim Hauck's work on Fiber-Optics began in the 1990's when he developed systems for delivery of high power laser beams for materials processing. He continued that work with the use of FO for laser power delivery in optical dazzlers and imagers, and Laser Induced Breakdown Spectroscopy Systems.

    Contact this instructor (please mention course name in the subject line)

What You Will Learn:

  • What are the Emerging issues for the use of Fiber-Optic system in both military and commercial applications
  • Future Opportunities in Fiber-Optics applications, and much more!)
  • Overcoming Challenges in Fiber-Optic Systems (bandwidth expansion, real-time global connectivity, survivability & more)
  • Measuring the Key Performance Tradeoffs (cost vs. size/weight vs. availability vs. power vs. transmission distance)
  • Tools and Techniques for Meeting the Requirements of Data Rate, Availability, and transmitting high power beams without damage to the fiber or degradation of the light transmitted.
  • From this course you will obtain the knowledge and ability to perform basic FO systems engineering calculations, identify tradeoffs, interact meaningfully with colleagues, evaluate systems, and understand the literature.

Course Outline:

  1. Intro to FO, Fundamentals, Components, Communications Fiber Optic Communication Systems. Introduction to analog and digital fiber optic systems including terrestrial, undersea, CATV, gigabit Ethernet, RF antenna remoting, and plastic optical fiber data links.

  2. Types of Fibers, Properties of Fibers, Fiber Material, Structure, etc. Optics and Lightwave Fundamentals. Ray theory, numerical aperture, diffraction, electromagnetic waves, polarization, dispersion, Fresnel reflection, optical waveguides, birefringence, phase velocity, group velocity.

  3. Specialty Fibers, Cabling, Light Sources Optical Fibers. Step-index fibers, graded-index fibers, attenuation, optical modes, dispersion, non-linearity, fiber types, bending loss.

  4. Transmitters, Receivers, Amplification, Regeneration & Wavelength. Optical Transmitters. Introduction to semiconductor physics, FP, VCSEL, DFB lasers, direct modulation, linearity, RIN noise, dynamic range, temperature dependence, bias control, drive circuitry, threshold current, slope efficiency, chirp. Lasers, LEDS, Fiber Amplifiers, wavelength and technology options. Optical Receivers. Quantum properties of light, PN, PIN, APD, design, thermal noise, shot noise, sensitivity characteristics, BER, front end electronics, bandwidth limitations, linearity, quantum efficiency. Optical Amplifiers. EDFA, Raman, semiconductor, gain, noise, dynamics, power amplifier, pre- amplifier, line amplifier.

  5. Connector, Couplers, WDM Optical Cables and Connectors. Types, construction, fusion splicing, connector types, insertion loss, return loss, connector care. Passive Fiber Optic Components. Couplers, isolators, circulators, WDM filters, Add-Drop multiplexers, attenuators. Specification Sheets. Interpreting optical component spec. sheets - what makes the best design component for a given application.

  6. Switches, Modulators, Measurements, Troubleshooting Optical Modulators. Mach-Zehnder interferometer, Electro-optic modulator, electro-absorption modulator, linearity, bias control, insertion loss, polarization.

  7. Networking, Standards, System Design (briefly)

  8. Network design, Global Telecomm, Regional and Metro (Briefly)

  9. Local Telephone/Access, Internet Networks, Video Transmission (Briefly)

  10. Mobile FO Comms, FO Sensors*, Imaging and Illumination (Briefly)

  11. Applications: Fiber-Optic Applications- Sensors (rotation "Fiber-Optic Gyroscopes") Fiber-Optic Applications- Illumination & Material Processing (Beam Power through fibers) Fiber-Optic Applications- Bio-Medical


    Tuition for this two-day course is $1990 at one of our scheduled public courses. Onsite pricing is available. Please call us at 410-956-8805 or send an email to