top header
top gradation HOME top vertical line top vertical line top vertical line top vertical line top vertical line top vertical line top vertical line menu gray
black line 2
menu gray tab More About ATI
menu blue ATI — Who We Are
white line
menu blue Contact ATI Courses
white line
menu blue List Of ATI Courses
white line
menu blue Attendees Testimonials
white line
menu blue The ATI FAQ Sheet
white line
menu blue Suggestions/Wait List
white line
menu blue New Courses
white line
menu blue Become an ATI Instructor
menu gray tab site resources
menu blue Acoustics & Sonar
white line
menu blue Rockets & Space
white line
menu blue GPS Technology
white line
menu blue ATI Blog
white line
menu blue ATI Space News
white line
menu blue ATI Site Map
white line
menu blue ATI Staff Tutorials
white line
menu blue ATI Sampler Page
white line
menu gray tab bar
menu gray tab courses
white line
menu blue Current Schedule
white line
menu blue Onsite Courses
white line
menu blue Register Online
white line
menu blue Request Brochure
white line
menu blue Free On-Site Price Quote
white line
menu blue Download Catalog
white line
menu blue Distance Learning
black line  
 

Digital Radio Frequency Memories Design

Share |

Summary:

Technical Training Short On Site Course Quote In this 2-day course, the design of phase- and amplitude-sampling DRFM architectures are presented along with their problems and solutions. Narrowband and wideband designs are compared. Calculation of the spurious signals is presented and design strategies for advanced DRFM decoys for counter-targeting, counter-terminal applications are emphasized. Methods to synthesize multiple, structured false-targets against high range resolution profiling radars (ISAR, SAR) are presented. Derivation of false-target phase and gain coefficients are discussed including those for the required clutter models. Digital circuit design issues e.g., quantization errors, overflow, dynamic range are addressed. Methods used by adversaries to discriminate the DRFM false-targets from actual targets are offered leading to further DRFM design considerations. Lessons learned from recent EW flight tests are emphasized.

This course is intended primarily for radar, EW engineers and scientists interested in the design of digital RF memories and signal processing algorithms for electronic attack. Attendees should have a good knowledge of radar systems and signal processing. Many example problems are worked out to demonstrate the concepts and further the understanding of the material being presented.

Tuition:

What you will learn:

Design of DRFM amplitude and phase sampling architectures for electronic warfare applications. Trade-offs and the significance of noise components is calculated. Operational considerations for narrowband and wideband DRFMs are discussed. Identification and prediction of spurious signals is presented and methods to reduce their effect is quantified. Algorithms for time and frequency modulation are presented. Use of DRFMs in a hard-kill situation is also presented. Design of structured false-target processors is emphasized. Lessons learned from recent EW flight tests are presented and counter-DRFM techniques are also discussed.

Course Outline:

  1. Architectures, Design Trade-offs Phase- and amplitude sampling architectures; Single and double sideband systems; Mathematical models for both digital and analog components; Limitations including noise components; Prediction of dynamic performance and derivation of DRFM transfer functions;
  2. Technical Considerations Instantaneous, operating bandwidth requirements; Significant problems in DRFM design and their solutions; Calculation of spurious signals; Efficiency comparison between phase and amplitude designs;
  3. Algorithms for Electronic Attack Overall performance prediction of electronic attack; Algorithms for time-delay, advance modulation; for electronic attack; Algorithms for frequency modulation; Effects of coordinated time-frequency modulation;
  4. Advanced Decoy Processor Designs DRFM role in hard-kill chain; Counter-surveillance, counter-targeting and counter-terminal applications; Effects on coherent range-Doppler processors; Digital image synthesizer design; False target and sea-clutter coefficients; Bit-level models and pipelined architectures;
  5. Lessons from UAS EW Flight Tests Electromagnetic maneuver warfare (EMW) and counter-SAM suppression configurations; Eliminating geometrical EA limitations; Measures of effectiveness; Fielded DRFM configurations; DRFM swarm concepts and preliminary flight test results;
  6. Differentiating DRFM false targets Statistical signal processing; Principal component analysis and the Fisher ratio; Polarization modulation algorithms; Multivariate analysis of variance; Multi-layer perceptrons; .


Tuition:

This course is not on the current schedule of open enrollment courses. If you are interested in attending this or another course as open enrollment, please contact us at (410) 956-8805 or at ati@aticourses.com and indicate the course name and number of students who wish to participate. ATI typically schedules courses with a lead time of 3-5 months. Group courses can be presented at your facility. For on-site pricing, request an on-site quote. You may also call us at (410) 956-8805 or email us at ati@aticourses.com.

Register Now Without Obligation

spacer