top header
top gradation HOME top vertical line top vertical line top vertical line top vertical line top vertical line top vertical line top vertical line menu gray
black line 2
menu gray tab More About ATI
menu blue ATI — Who We Are
white line
menu blue Contact ATI Courses
white line
menu blue List Of ATI Courses
white line
menu blue Attendees Testimonials
white line
menu blue The ATI FAQ Sheet
white line
menu blue Suggestions/Wait List
white line
menu blue New Courses
white line
menu blue Become an ATI Instructor
menu gray tab site resources
menu blue Acoustics & Sonar
white line
menu blue Rockets & Space
white line
menu blue GPS Technology
white line
menu blue ATI Blog
white line
menu blue ATI Space News
white line
menu blue ATI Site Map
white line
menu blue ATI Staff Tutorials
white line
menu blue ATI Sampler Page
white line
menu gray tab bar
menu gray tab courses
white line
menu blue Current Schedule
white line
menu blue Onsite Courses
white line
menu blue Register Online
white line
menu blue Request Brochure
white line
menu blue Free On-Site Price Quote
white line
menu blue Download Catalog
white line
menu blue Distance Learning
black line  

ATI's Digital Signal Processing System Design course

Share |


    Technical Training Short On Site Course Quote

      This four-day course is intended for engineers and scientists concerned with the design and performance analysis of signal processing applications. The course will provide the fundamentals required to develop optimum signal processing flows based upon processor throughput resource requirements analysis. Emphasis will be placed upon practical approaches based on lessons learned that are thoroughly developed using procedures with computer tools that show each step required in the design and analysis. MATLAB code will be used to demonstrate concepts and show actual tools available for performing the design and analysis.



      Dr Joseph G. Lucas has over 35 years of experience in DSP techniques and applications including EW, sonar and radar applications, performance analysis, digital filtering, spectral analysis, beamforming, detection and tracking techniques, finite word length effects, and adaptive processing. He has industry experience at IBM and DSR with radar, sonar and EW applications and has taught classes in DSP theory and applications. He is author of the textbook: Digital Signal Processing: A System Design Approach (Wiley).

      Contact this instructor (please mention course name in the subject line)

    What you will learn:

    • What are the key DSP concepts and how do they relate to real applications?
    • How is the optimum real-time signal processing flow determined?
    • What are the methods of time domain and frequency domain implementation?
    • How is an optimum DSP system designed?
    • What are typical characteristics of real DSP multirate systems?
    • How can you use MATLAB to analyze and design DSP systems?

      From this course you will obtain the knowledge and ability to perform basic DSP systems engineering calculations, identify tradeoffs, interact meaningfully with colleagues, evaluate systems, and understand the literature. Students will receive a suite of MATLAB m-files for direct use or modification by the user. These codes are useful to both MATLAB users and users of other programming languages as working examples of practical signal processing algorithm implementations.

    Course Outline:

    1. Discrete Time Linear Systems. A review of the fundamentals of sampling, discrete time signals, and sequences. Develop fundamental representation of discrete linear time-invariant system output as the convolution of the input signal with the system impulse response or in the frequency domain as the product of the input frequency response and the system frequency response. Define general difference equation representations, and frequency response of the system. Show a typical detection system for detecting discrete frequency components in noise.

    2. System Realizations & Analysis. Demonstrate the use of z-transforms and inverse z-transforms in the analysis of discrete time systems. Show examples of the use of z-transform domain to represent difference equations and manipulate DSP realizations. Present network diagrams for direct form, cascade, and parallel implementations.

    3. Digital Filters. Develop the fundamentals of digital filter design techniques for Infinite Impulse Response (IIR) and Develop Finite Impulse Response filter (FIR) types. MATLAB design examples will be presented. Comparisons between FIR and IIR filters will be presented.

    4. Discrete Fourier Transforms (DFT). The fundamental properties of the DFT will be presented: linearity, circular shift, frequency response, scallo ping loss, and effective noise bandwidth. The use of weighting and redundancy processing to obtain desired performance improvements will be presented. The use of MATLAB to calculate performance gains for various weighting functions and redundancies will be demonstrated.

    5. Fast Fourier Transform (FFT). The FFT radix 2 and radix 4 algorithms will be developed. The use of FFTs to perform filtering in the frequency domain will be developed using the overlap-save and overlap-add techniques. Performance calculations will be demonstrated using MATLAB. Processing throughput requirements for implementing the FFT will be presented.

    6. Multirate Digital Signal Processing. Multirate processing fundamentals of decimation and interpolation will be developed. Methods for optimizing processing throughput requirements via multirate designs will be developed. Multirate techniques in filter banks and spectrum analyzers and synthesizers will be developed. Structures and Network theory for multirate digital systems will be discussed.

    7. Detection of Signals In Noise. Develop Receiver Operating Charactieristic (ROC) data for detection of narrowband signals in noise. Discuss linear system responses to discrete random processes. Discuss power spectrum estimation. Use realistic SONAR problem. MATLAB to calculate performance of detection system.

    8. Finite Arithmetic Error Analysis. Analog-to-Digital conversion errors will be studied. Quantization effects of finite arithmetic for common digital signal processing algorithms including digital filters and FFTs will be presented. Methods of calculating the noise at the digital system output due to arithmetic effects will be developed.

    9. System Design. Digital Processing system design techniques will be developed. Methodologies for signal analysis, system design including algorithm selection, architecture selection, configuration analysis, and performance analysis will be developed. Typical state-of-the-art COTS signal processing devices will be discussed.

    10. Advanced Algorithms & Practical Applications. Several algorithms and associated applications will be discussed based upon classical and recent papers/research: Recursive Least Squares Estimation, Kalman Filter Theory, Adaptive Algorithms: Joint Multichannel Least Squares Lattice, Spatial filtering of equally and unequally spaced arrays.


      Tuition for this four-day course is $2090 per person at one of our scheduled public courses. Onsite pricing is available. Please call us at 410-956-8805 or send an email to