All posts by admin

New Horizons Flyover of Pluto

Two years ago on July 14, 2015 the New Horizon spacecraft reached Pluto. To celebrate this anniversary NASA release a Pluto flyby video.

Using actual New Horizons data and digital elevation models of Pluto and its largest moon Charon, mission scientists have created flyover movies that offer spectacular new perspectives of the many unusual features that were discovered and which have reshaped our views of the Pluto system – from a vantage point even closer than the spacecraft itself.

This dramatic Pluto flyover begins over the highlands to the southwest of the great expanse of nitrogen ice plain informally named Sputnik Planitia. The viewer first passes over the western margin of Sputnik, where it borders the dark, cratered terrain of Cthulhu Macula, with the blocky mountain ranges located within the plains seen on the right. The tour moves north past the rugged and fractured highlands of Voyager Terra and then turns southward over Pioneer Terra — which exhibits deep and wide pits — before concluding over the bladed terrain of Tartarus Dorsa in the far east of the encounter hemisphere.

Digital mapping and rendering were performed by Paul Schenk and John Blackwell of the Lunar and Planetary Institute in Houston.

Background

New Horizons is a space probe launched by NASA on 19 January 2006, to the dwarf planet Pluto and on an escape trajectory from the Sun. It is the first man-made spacecraft to go to Pluto. Its flight took eight years. It arrived at the PlutoCharon system on July 14, 2015. It flew near Pluto and took photographs and measurements while it passed. At about 1 kilobit per second it took 15 months to transmit them back to Earth.

The New Horizons spacecraft

The primary mission of New Horizons is to study Pluto and its system of moons. The secondary mission is to study any objects in the Kuiper Belt, if something became available for a flyby.

The space probe set the record for the fastest man-made object ever launched, with the Earth-relative speed of about 16.26 km/s, although, arguably, the Helios probes got a faster Sun-relative speed. It used a gravity assist from Jupiter to get its high speeds without having to burn as much monopropellant (weak rocket fuel) as needed to fly directly to Pluto.

ATI instructors who helped plan, develop and engineer the New Horizons Mission. These include the following engineers and scientists, with their bios and links to their related ATI courses.

1. Dr. Alan Stern http://aticourses.com/planetary_science.htm

Dr. Alan Stern is a planetary scientist, space program executive, aerospace consultant, and author. In 2010, he was elected to be the President and CEO of The Golden Spike Company, a commercial space corporation planning human lunar expeditions. Additionally, since 2009, he has been an Associate Vice President at the Southwest Research Institute, and since 2008 has had his own aerospace consulting practice.

Dr. Stern is the Principal Investigator (PI) of NASA’s $720M New Horizon’s Pluto-Kuiper Belt mission, the largest PI-led space mission ever launched by NASA. New Horizons launched in 2006 and is arriving July 14, 2015. Dr. Stern is also the PI of two instruments aboard New Horizons, the Alice UV spectrometer and the Ralph Visible Imager/IR Spectrometer.

2. Eric Hoffman

http://www.aticourses.com/effective_design_reviews.htm

http://www.aticourses.com/spacecraft_quality.htm

http://www.aticourses.com/satellite_rf_communications.htm

Eric Hoffman has designed space-borne communications and navigation equipment and performed systems engineering on many APL satellites and communications systems. He has authored over 60 papers and holds 8 patents in these fields. Mr. Hoffman was involved in the proposal (as well as several prior Pluto mission concepts).  He chaired the major system level design reviews (and now teaches the course� Effective Design Reviews).  He was Space Department Chief Engineer during the concept, design, fabrication, and test of New Horizons. His still actively consulting in the field. He is an Associate Fellow of the AIAA and coauthor of the leading textbook Fundamentals of Space Systems

3. Chris DeBoy

http://www.aticourses.com/Satellite_Communications_Design_Engineering.htm

Chris DeBoy leads the RF Engineering Group in the Space Department at the Johns Hopkins University Applied Physics Laboratory, and is a member of APL’s Principal Professional Staff. He has over 20 years of experience in satellite communications, from systems engineering (he is the lead RF communications engineer for the New Horizons Mission to Pluto) to flight hardware design for both Low-Earth orbit and deep-space missions. He holds a BSEE from Virginia Tech, a Master’s degree in Electrical Engineering from Johns Hopkins, and teaches the satellite communications course for the Johns Hopkins University.

4. Dr. Mark E. Pittelkau http://www.aticourses.com/attitude_determination.htm

Dr. Pittelkau was previously with the Applied Physics Laboratory, Orbital Sciences Corporation, CTA Space Systems (now Orbital), and Swales Aerospace. His experience in satellite systems covers all phases of design and operation, including conceptual design, implementation, and testing of attitude control systems, attitude and orbit determination, and attitude sensor alignment and calibration, control-structure interaction analysis, stability and jitter analysis, and post-launch support. His current interests are precision attitude determination, attitude sensor calibration, orbit determination, and optimization of attitude maneuvers. Dr. Pittelkau earned the B.S. and Ph. D. degrees in Electrical Engineering from Tennessee Technological University and the M.S. degree in EE from Virginia Polytechnic Institute and State University.

5. Douglas Mehoke http://www.aticourses.com/spacecraft_thermal_control.htm

Douglas Mehoke is the Assistant Group Supervisor and Technology Manager for the Mechanical System Group in the Space Department at The Johns Hopkins University Applied Physics Laboratory. He has worked in the field of spacecraft and instrument thermal design for 30 years, and has a wide background in the fields of heat transfer and fluid mechanics. He has been the lead thermal engineer on a variety spacecraft and scientific instruments, including MSX, CONTOUR, and New Horizons. He is presently the Technical Lead for the development of the Solar Probe Plus Thermal Protection System.  He was the original thermal engineer for New Horizons, the mechanical system engineer, and is currently the spacecraft damage lead for the flyby Hazard Team. Other JHU/APL are currently teaching the Spacecraft Thermal Control course.

 

6. Steven Gemeny http://www.aticourses.com/ground_systems_design.htm
Steve Gemeny is a Principal Program Engineer and a former Senior Member of the Professional Staff at The Johns Hopkins University Applied Physics Laboratory, where he served as Ground Station Lead for the TIMED mission to explore Earth’s atmosphere and Lead Ground System Engineer on the New Horizons mission to explore Pluto by 2020. Mr. Gemeny is an experienced professional in the field of Ground Station and Ground System design in both the commercial world and on NASA Science missions with a wealth of practical knowledge spanning nearly three decades. Mr. Gemeny delivers his experiences and knowledge to his ATIcourses’ students with an informative and entertaining presentation style. Mr Gemeny is Director Business Development at Syntonics LLC, working in RF over fiber product enhancement, new application development for RF over fiber technology, oversight of advanced DOD SBIR/STTR research and development activities related to wireless sensors and software defined antennas.

 

7. John Penn http://www.aticourses.com/fundamentals_of_RF_engineering.html
John Penn is currently the Team Lead for RFIC Design at Army Research Labs. Previously, he was a full time engineer at the Applied Physics Laboratory for 26 years where he contributed to the New Horizons Mission. He joined the Army Research Laboratory in 2008. Since 1989, he has been a part-time professor at Johns Hopkins University where he teaches RF & Microwaves I & II, MMIC Design, and RFIC Design. He received a B.E.E. from the Georgia Institute of Technology in 1980, an M.S. (EE) from Johns Hopkins University (JHU) in 1982, and a second M.S. (CS) from JHU in 1988.

 

8. Timothy Cole

http://www.aticourses.com/space_based_lasers.htm

http://www.aticourses.com/Tactical_Intelligence_Surveillance_Reconnaissance_System_Engineering.htm

http://www.aticourses.com/Wireless_Sensor_Networking.htm

Timothy Cole is a leading authority with 30 years of experience exclusively working in electro-optical systems as a systems and design engineer. While at Applied Physics Laboratory for 21 years, Tim was awarded the NASA Achievement Award in connection with the design, development and operation of the Near-Earth Asteroid Rendezvous (NEAR) Laser Radar and was also the initial technical lead for the New Horizons LOng-Range Reconnaissance Imager (LORRI instrument).  He has presented technical papers addressing space-based laser altimetry all over the US and Europe. His industry experience has been focused on the systems engineering and analysis associated development of optical detectors, wireless ad hoc remote sensing, exoatmospheric sensor design and now leads ICESat-2 ATLAS altimeter calibration effort.

 

 

9. Robert Moore http://www.aticourses.com/satellite_rf_communications.htm
Robert C. Moore worked in the Electronic Systems Group at the JHU/APL Space Department since 1965 and is now a consultant. He designed embedded microprocessor systems for space applications. He led the design and testing efforts for the New Horizons spacecraft autonomy subsystem. Mr. Moore holds four U.S. patents. He teaches for ATIcourses and the command-telemetry-data processing segment of “Space Systems” at the Johns Hopkins University Whiting School of Engineering.

 

10. Jay Jenkins http://www.aticourses.com/spacecraft_solar_arrays.htm

 

Jay Jenkins is a Systems Engineer in the Human Exploration and Operations Mission Directorate at NASA and an Associate Fellow in the AIAA. His 24-year aerospace career provided many years of experience in design, analysis and test of aerospace power systems, solar arrays, and batteries. His career has afforded him opportunities for hands-on fabrication and testing, concurrent with his design responsibilities. He was recognized as a winner of the ASME International George Westinghouse Silver Medal for his development of the first solar arrays beyond Mars’ orbit and the first solar arrays to orbit the planet Mercury. He was recognized with two Best Paper Awards in the area of Aerospace Power Systems.

 

Russian hacker group ‘CyberBerkut’ returns to public light with allegations against Clinton

CyberBerkutCyberBerkutA Twitter account tied to a group that the Defense Intelligence Agency recently described as “Russian hackers … supporting Russia’s military operations” returned to the spotlight Wednesday by posting a message that alleges Ukrainian government officials and businessmen laundered money and sent it to Hillary Clinton by making donations to the Clinton Foundation.

These allegations, a vague and loosely defined set of financial connections described in a single graphic and related blog post, could not be confirmed. The blog post alludes to an inappropriate relationship between Ukrainian billionaire Victor Pinchuk and the Clinton family. But emails that were supposedly stolen and posted in this blog post do not prove that such a conspiracy occurred. An attempt to contact the group went unanswered.

The Tweet posted Wednesday by this “CyberBerkut” group is the first such message posted publicly since January after the account shared an image of a redacted email it claims revealed plans by the U.S. government to doctor evidence to suggest that Russian hackers had interfered in the 2016 U.S. election.

Read More Here.

Russian hacker group ‘CyberBerkut’ returns to public light with allegations against Clinton

CyberBerkut

 

A Twitter account tied to a group that the Defense Intelligence Agency recently described as “Russian hackers … supporting Russia’s military operations” returned to the spotlight Wednesday by posting a message that alleges Ukrainian government officials and businessmen laundered money and sent it to Hillary Clinton by making donations to the Clinton Foundation.

These allegations, a vague and loosely defined set of financial connections described in a single graphic and related blog post, could not be confirmed. The blog post alludes to an inappropriate relationship between Ukrainian billionaire Victor Pinchuk and the Clinton family. But emails that were supposedly stolen and posted in this blog post do not prove that such a conspiracy occurred. An attempt to contact the group went unanswered.

The Tweet posted Wednesday by this “CyberBerkut” group is the first such message posted publicly since January after the account shared an image of a redacted email it claims revealed plans by the U.S. government to doctor evidence to suggest that Russian hackers had interfered in the 2016 U.S. election.

SpaceX successfully launches third satellite in 12 days

34718447506_7ff2cfa1b2_oRApplied Technology Institute offers a variety of courses on Space, Satellite & Aerospace Engineering.  SpaceX launched a commercial communications satellite using a Falcon 9 rocket, its third flight in just 12 days.

The rocket blasted off on Wednesday evening at 7.38 p.m. (local time) from the Kennedy Space Centre in Florida, delivering the satellite called the Intelsat 35e to a geostationary transfer orbit, reports Xinhua news agency.

The satellite was deployed about 32 minutes after launch.

The California-based company tried to launch the satellite on Sunday and Monday, but stopped twice in the final seconds of countdown.

With a launch mass of over 6.7 tonnes, the Intelsat 35e is the heaviest satellite Falcon 9 has ever sent to orbit.

As a result, SpaceX did not attempt to recover the rocket’s first stage after launch this time, the company said.

It was lofted to provide high-performance services in both the C- and Ku-bands. Wednesday’s mission came just 10 days after SpaceX’s first-ever “doubleheader” weekend, when it launched two missions within about 50 hours.

One saw the launch of BulgariaSat-1, the first geostationary communications satellite in Bulgaria’s history, from the Kennedy Space Centre on June 23.

Another had 10 satellites launched to low-Earth orbit for the U.S. satellite phone company Iridium from the Vandenberg Air Force Base in California two days later.

The Intelsat 35e also marked the tenth of SpaceX’s more than 20 launches planned this year. Last year, the company completed eight successful launches before an explosion during routine ground testing temporarily halted Falcon 9 launches.

Meanwhile, while the Intelsat 35e mission involved an expendable Falcon 9 first stage, SpaceX has recovered 11 first stages on previous missions, re-flying and re-landing two of them. The company has also started tackling the challenge of recovering and reusing the launch vehicle’s payload fairings.

 

 

Canada Just Celebrated Its 150th Anniversary of the Enactment of the Constitution Act

To celebrate this anniversary, Michael Dunn of Electronic Design News’ (EDN’s), has compiled a number of blogs on Canada’s technological past and present with a focus on engineers, technologies, institutions, and facilities. Many are informative and fascinating, such as the time in 1978 when a Soviet satellite, with a nuclear reactor still on board, burned up in the Earth’s atmosphere, scattering radioactive debris over Northwest Canada.

http://www.edn.com/electronics-blogs/benchtalk/4458561/Happy-150th-Canada–The-Institutions

The Applied Technology Institute (ATI) has taught a number of space-related courses at the Canadian Space Agency (CSA) and defense-related courses for Armed Forces Canada and Canada’s Defense, Research, and Development.

Canadian Flag

NASA bets the farm on the long-term viability of space agriculture

Old MacDonald had a space farm.

Applied Technology Institute (ATI Courses) offers a variety of courses on Space, Satellite & Aerospace Engineering.

Also, our president, Jim Jenkins, is an avid gardener who grows a garden full of tomatoes, peppers, squash, peas.

Jim_Tomato

If you give an astronaut a packet of food, she’ll eat for a day. If you teach an astronaut how to farm in space, she’ll eat for a lifetime—or at least for a 6-month-long expedition on the International Space Station.

Since its earliest missions, NASA has been focused on food, something astronauts need whether they’re at home on Earth or orbiting 250-odd miles above it. Over the years, the administration has tried a series of solutions: John Glenn had pureed beef and veggie paste, other flight crews used new-age freeze drying technology. More recently, NASA’s been trying to enable its astronauts to grow their own food in orbit.

Bryan Onate, an engineer stationed at the Kennedy Space Center, is on the forefront of this technology. He helped lead the team that built Veggie, NASA’s first plant growth system, and next month he’s sending up Veggie’s new and improved brother, the Advanced Plant Habitat.

The habitat is the size of a mini-fridge. But instead of storing soda, it will carefully record every step in the growth of plants aboard the space station. This will allow researchers on the ground unprecedented insight into how plants are shaped by microgravity and other forces at work in outer space. And, Onate says, “astronauts may get to enjoy the fruit of our labor.”

Read more here.

Latest Cyber News

466590main_07-2010_soc-img2On May 23rd, the Qatari News Agency (QNA) was hacked, initiating a political fallout. It is believed, by the U.S. intelligence community, that Russia may have been responsible. The hack centered around the creation and broadcast of a fake video that wrongly indicated Qatar leader’s allegiance with movements such as Hamas and Hezbollah, establishing a narrative across the Middle East.
The Applied Technology Institute (ATI) offers a Cyber Leader Course (CLC), which provides cyber leaders with the information they need to understand the Cyber Security landscape. The course exercises provide an opportunity to understand how an attacker gains access and moves around a network. Cyber leaders learn that once an attacker gains access to a network, they can change information, such as web pages, user accounts, passwords and log files.
For more information on this course, visit http://www.aticourses.com/Cyber_Leader_Course.htm.
Upcoming course dates include:
  • September 6–7 2017 and
  • October 1–2 2017
Both courses are held in Hanover, MD.

Virginia Class Attack Submarine (SSNs) Program Status and Shortfall Report to Congress

Summary of Congressional Research Service Report
The Navy has been procuring Virginia (SSN-774) class nuclear-powered attack submarines since FY1998. The two Virginia-class boats requested for procurement in FY2017 are to be the 25th and 26 th boats in the class. The 10 Virginia-class boats programmed for procurement in FY2014- FY2018 (two per year for five years) are being procured under a multiyear-procurement (MYP) contract.
From FY2025 to FY2036, the number of SSNs is projected to experience a dip or valley, reaching a minimum of 41 boats (i.e., 25 boats, or about 38%, less than the 66-boat force-level goal) in FY2029. This projected valley is a consequence of having procured a relatively small number of SSNs during the 1990s, in the early years of the post-Cold War era. Some observers are concerned that this projected valley in SSN force levels could lead to a period of heightened operational strain for the SSN force, and perhaps a period of weakened conventional deterrence against potential adversaries.
The Navy has been exploring options for mitigating the projected valley. Procuring additional Virginia-class boats in the near term is one of those options. In that connection, the Navy has expressed interest in procuring an additional Virginia-class boat in FY2021. Congress also has the option of funding the procurement of one or more additional Virginia-class boats in FY2018-FY2020.
For more information attend
Submarines and Submariners19-Sep-1721-Sep-18
Jim Jenkins, President

Fun Fishing Times On Chesapeake Bay!

Jim Jenkins and Ed McCarthy (and families) from ATIcourses.com went fishing on May 24, 2017. They left from Chesapeake Beach, Maryland .

It was a clear, sunny day. The fishing was great. Bunch of rockfish (also known as striped bass) were caught in about 6 hours.

The striped bass, named the official fish of the State of Maryland in 1965, gets its name from the seven or eight dark stripes that run from head to tail. The fish has an olive green back, fading to light silver on its sides, with a white underside. Known for its size and ability to put up a good fight, the striped bass is considered by many to be the premier sport fish on the Bay. It is also mighty tasty.

Babylon 5 solar system bears striking resemblance to our own

 

The number of planetary systems discovered seems to grow on a daily basis, but most of them are wildly different to our own solar system. Now a team of University of Arizona researchers led by Kate Su have used NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA) flying observatory to take a closer look at a system 10.5 light years away and discovered it has a familiar general structure.


 

The star in question is Epsilon Eridani (ε Eri) in the southern hemisphere of the constellation of Eridanus. Its previous claims to fame were as the setting for the sci fi television series Babylon 5 and the disputed location of Star Trek‘s planet Vulcan. It’s also been the subject of several early studies seeking extrasolar planets and was even monitored in the 1960s by Project Ozma as a possible source of extraterrestrial intelligence.

Much of the previous work on Epsilon Eridani involved the Spitzer Space Telescope, but SOFIA is over twice the size of Spitzer, has three times the resolution, and can operate in the infrared at wavelengths between 25 and 40 microns. What this meant was that SOFIA could discern much smaller details, especially from warm materials, than before, which suggested an alternative model to the one provided by Spitzer’s data.